Abstract:
The interaction of a laminar boundary layer with a shock wave at a Mach number $\mathrm{M}=1.43$ is studied by numerical simulation. The results obtained by direct numerical simulation are compared with the results of calculations using the Reynolds-averaged Navier–Stokes (RANS) equations supplemented with different turbulence models describing laminar-turbulent transition. The possibility of determining the position of the flow turbulence zone based on linear stability theory and the $\mathrm{e}^N$-method is estimated. Comparison of the numerical simulation with experimental data shows that the engineering RANS methods can be used to study supersonic flows in which transition to turbulence occurs in regions of interaction of the shock wave with the boundary layer.
Keywords:
boundary layer, shock wave, laminar-turbulent transition, flow separation, direct numerical simulation, Reynolds equations, linear stability theory.
Citation:
P. A. Polivanov, D. V. Khotyanovsky, A. I. Kutepova, A. A. Sidorenko, “Investigation of various approaches to the modeling of laminar-turbulent transition in compressible separated flows”, Prikl. Mekh. Tekh. Fiz., 61:5 (2020), 40–51; J. Appl. Mech. Tech. Phys., 61:5 (2020), 717–726
\Bibitem{PolKhoKut20}
\by P.~A.~Polivanov, D.~V.~Khotyanovsky, A.~I.~Kutepova, A.~A.~Sidorenko
\paper Investigation of various approaches to the modeling of laminar-turbulent transition in compressible separated flows
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2020
\vol 61
\issue 5
\pages 40--51
\mathnet{http://mi.mathnet.ru/pmtf268}
\crossref{https://doi.org/10.15372/PMTF20200505}
\elib{https://elibrary.ru/item.asp?id=44093180}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2020
\vol 61
\issue 5
\pages 717--726
\crossref{https://doi.org/10.1134/S0021894420050053}
Linking options:
https://www.mathnet.ru/eng/pmtf268
https://www.mathnet.ru/eng/pmtf/v61/i5/p40
This publication is cited in the following 8 articles:
M. A. Akimov, P. A. Polivanov, A. A. Sidorenko, “Sravnenie rezultatov RANS- i ILES-raschetov dlya tolstogo kaplevidnogo profilya pri malykh chislakh Reinoldsa”, Prikl. mekh. tekhn. fiz., 65:2 (2024), 62–80
M. A. Akimov, P. A. Polivanov, A. A. Sidorenko, “COMPARISON OF RESULTS OF RANS AND ILES BASED CALCULATIONS FOR A THICK TEARDROP AIRFOIL AT LOW REYNOLDS NUMBERS”, J Appl Mech Tech Phy, 65:2 (2024), 233
D. A. Bountin, O. I. Vishnyakov, P. A. Polivanov, “Investigation of the laminar-turbulent transition with the use of a surface hot-wire probe”, J. Appl. Mech. Tech. Phys., 65:4 (2024), 629–637
A. I. Kutepova, D. V. Khotyanovsky, A. A. Sidorenko, “Numerical simulation of the development of perturbations induced by a periodic heat source in a supersonic boundary layer”, J. Appl. Mech. Tech. Phys., 64:5 (2024), 853–857
Oleg Vishnyakov, Pavel Polivanov, Andrey Sidorenko, “Response of the Shock Wave/Boundary Layer Interaction to Disturbances Induced by the Plasma Discharge”, Aerospace, 10:9 (2023), 798
Stanislav Kirilovskiy, Tatiana Poplavskaya, Andrey Sidorenko, D.M. Markovich, S.V. Alexeenko, A.A. Morozov, “On the stability of supersonic boundary layer in interaction with weak shock waves”, E3S Web Conf., 459 (2023), 03003
D V Khotyanovsky, A N Kudryavtsev, A I Kutepova, “Numerical simulation of the interaction of the disturbed boundary layer with an incident shock”, J. Phys.: Conf. Ser., 2057:1 (2021), 012005
M. A. Akimov, P. A. Polivanov, “Investigation of sharp change in the lift of a thick teardrop airfoil at low Reynolds numbers”, Thermophys. Aeromech., 28:6 (2021), 805