Abstract:
Exact solutions of the problem of nonlinear bending of thin rods under various fixing conditions and point dead loads are obtained. The solutions written in a unified parametric form and expressed in terms of the elliptic Jacobi functions are classified. These solutions depend on a single parameter – modulus of elliptic functions.
This publication is cited in the following 18 articles:
Dmitriy M. Zuev, Dmitrii M. Makarov, Kirill G. Okhotkin, Springer Proceedings in Physics, 1067, Proceedings of the XII All Russian Scientific Conference on Current Issues of Continuum Mechanics and Celestial Mechanics, 2024, 356
Wing-Sum Law, Sofia Di Toro Wyetzner, Raymond Zhen, Sean Follmer, 2024 IEEE International Conference on Robotics and Automation (ICRA), 2024, 9696
Wang Xianheng, Wang Mu, Qiu Xinming, “Sign problems in elliptic integral solution of planar elastica theory”, European Journal of Mechanics - A/Solids, 100 (2023), 105032
D. M. Zuev, D. D. Makarov, K. G. Okhotkin, “Experimental and analytical study of geometric nonlinear bending of a cantilever beam under a transverse load”, J. Appl. Mech. Tech. Phys., 63:2 (2022), 365–371
K. N. Anakhaev, “The Problem of Nonlinear Cantilever Bending in Elementary Functions”, Mech. Solids, 57:5 (2022), 997
D. Weaire, A. Mughal, J. Ryan-Purcell, S. Hutzler, “Description of the buckling of a chain of hard spheres in terms of Jacobi functions”, Physica D: Nonlinear Phenomena, 433 (2022), 133177
Yin-lei Huo, Xue-sheng Pei, Meng-yao Li, “Large deformation analysis of a plane curved beam using Jacobi elliptic functions”, Acta Mech, 233:9 (2022), 3497
Fei Gao, Wei-Hsin Liao, Xinyu Wu, “Being gradually softened approach for solving large deflection of cantilever beam subjected to distributed and tip loads”, Mechanism and Machine Theory, 174 (2022), 104879
K. N. Anakhaev, “On the Calculation of Nonlinear Buckling of a Bar”, Mech. Solids, 56:5 (2021), 684
D M Zuev, Yu V Zakharov, “Large deflection of a cantilever beam under transverse loading. A modification of linear theory.”, IOP Conf. Ser.: Mater. Sci. Eng., 822:1 (2020), 012039
D. M. Zuev, K. G. Okhotkin, “Modified formulas for maximum deflection of a cantilever under transverse loading”, S&T, 4:1 (2020), 28
D. Singhal, V. Narayanamurthy, “Large and Small Deflection Analysis of a Cantilever Beam”, J. Inst. Eng. India Ser. A, 100:1 (2019), 83
Milan Batista, “Analytical treatment of equilibrium configurations of cantilever under terminal loads using Jacobi elliptical functions”, International Journal of Solids and Structures, 51:13 (2014), 2308
Giovanni Mingari Scarpello, Daniele Ritelli, “Exact Solutions of Nonlinear Equation of Rod Deflections Involving the Lauricella Hypergeometric Functions”, International Journal of Mathematics and Mathematical Sciences, 2011 (2011), 1
M. L. Blow, J. M. Yeomans, “Superhydrophobicity on Hairy Surfaces”, Langmuir, 26:20 (2010), 16071
I. A. Lobacha, S. A. Babin, S. I. Kablukov, E. V. Podivilov, A. S. Kurkov, “Field distribution and mode interaction in twin-core fiber”, Laser Phys., 20:2 (2010), 311
Yu. V. Zakharov, K. G. Okhotkin, N. V. Filenkova, A. Yu. Vlasov, “Exact and approximate formulas for deflections of an elastically fixed rod under transverse loading”, J. Appl. Mech. Tech. Phys., 48:1 (2007), 126–134
S. Baragetti, “A Theoretical Study on Nonlinear Bending of Wires”, Meccanica, 41:4 (2006), 443