Abstract:
Fundamental solutions based on the engineering theory of bending of thin anisotropic plates (Kirchhoff–Love hypotheses) are constructed for anisotropic, in particular, orthotropic plates of canonical plan form (half-plane, quadrant, band, half-band, rectangle, and unbounded plate with an elliptic hole).
Keywords:
anisotropic plate, bending, point load, complex potentials, fundamental solution.
Citation:
V. N. Maksimenko, E. G. Podruzhin, “Fundamental solutions in problems of bending of anisotropic plates”, Prikl. Mekh. Tekh. Fiz., 44:4 (2003), 135–143; J. Appl. Mech. Tech. Phys., 44:4 (2003), 564–570
\Bibitem{MakPod03}
\by V.~N.~Maksimenko, E.~G.~Podruzhin
\paper Fundamental solutions in problems of bending of anisotropic plates
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2003
\vol 44
\issue 4
\pages 135--143
\mathnet{http://mi.mathnet.ru/pmtf2526}
\elib{https://elibrary.ru/item.asp?id=17274818}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2003
\vol 44
\issue 4
\pages 564--570
\crossref{https://doi.org/10.1023/A:1024261410694}
Linking options:
https://www.mathnet.ru/eng/pmtf2526
https://www.mathnet.ru/eng/pmtf/v44/i4/p135
This publication is cited in the following 3 articles:
D. A. Ivanychev, “EDGE STATE METHOD IN MECHANICS PROBLEMS CONCERNING ANISOTROPIC THIN PLATES”, Vestn. Dagest. gos. teh. univ., Teh. nauki, 45:2 (2018), 18
M. Wünsche, F. García-Sánchez, A. Sáez, “Analysis of anisotropic Kirchhoff plates using a novel hypersingular BEM”, Comput Mech, 49:5 (2012), 629
V. N. Maksimenko, E. G. Podruzhin, “Singular solutions for an anisotropic plate with an elliptical hole”, J. Appl. Mech. Tech. Phys., 46:1 (2005), 117–123