|
Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2003, Volume 44, Issue 2, Pages 3–13
(Mi pmtf2473)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Instability of an interface between steel layers acted upon by an oblique shock wave
O. B. Drennov, A. L. Mikhailov, P. N. Nizovtsev, V. A. Raevskii Institute of Experimental Physics, Sarov, 607190
Abstract:
This paper reports results of experiments in which development of instability was observed on the interface between two identical metals in tight contact with passage of an oblique shock wave through it. Numerical modeling of experimental results was performed by a two-dimensional Lagrangian procedure using an elastoplastic model with a functional dependence of the dynamic yield point on the state variables of the material. The calculations showed that perturbations develop only in the presence of a technological microgap of several tens of micrometers between the metal layers. Unloading of the material behind the oblique shock front into the gap gives rise to a considerable short-term velocity gradient. Simultaneously, near the interface behind the wave front there is a short-term loss of strength of the material due to thermal softening and the heterogeneous nature of the deformation.
Keywords:
instability, interface, oblique shock wave, strength.
Received: 02.07.2002 Accepted: 26.08.2002
Citation:
O. B. Drennov, A. L. Mikhailov, P. N. Nizovtsev, V. A. Raevskii, “Instability of an interface between steel layers acted upon by an oblique shock wave”, Prikl. Mekh. Tekh. Fiz., 44:2 (2003), 3–13; J. Appl. Mech. Tech. Phys., 44:2 (2003), 155–163
Linking options:
https://www.mathnet.ru/eng/pmtf2473 https://www.mathnet.ru/eng/pmtf/v44/i2/p3
|
|