Loading [MathJax]/jax/output/SVG/config.js
Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2004, Volume 45, Issue 3, Pages 136–145 (Mi pmtf2387)  

This article is cited in 11 scientific papers (total in 11 papers)

Plane problem of vibrations of an elastic floating plate under periodic external loading

L. A. Tkacheva

Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Science, Novosibirsk, 630090
Abstract: The Wiener–Hopf technique is used to construct an analytical solution of the problem of vibrations of a semi-infinite elastic floating plate under periodic external loading. The solution is obtained in explicit form ignoring draft. The dependences of the amplitudes of surface waves and ice-plate deflection on the loading distribution and frequency, ice thickness, and liquid depth are studied numerically. It is established that for some types of acting load, no waves propagate in the plate and liquid and the plate vibrations are standing waves localized near the loading region. An example of such vibrations is given and a condition for the occurrence of localized vibrations is found.
Keywords: surface waves, flexural-gravity waves, elastic thin plate, Wiener–Hopf technique, localized vibrations.
Received: 18.08.2003
English version:
Journal of Applied Mechanics and Technical Physics, 2004, Volume 45, Issue 3, Pages 420–427
DOI: https://doi.org/10.1023/B:JAMT.0000025025.38066.ab
Bibliographic databases:
Document Type: Article
UDC: 532.59:539.3:534.1
Language: Russian
Citation: L. A. Tkacheva, “Plane problem of vibrations of an elastic floating plate under periodic external loading”, Prikl. Mekh. Tekh. Fiz., 45:3 (2004), 136–145; J. Appl. Mech. Tech. Phys., 45:3 (2004), 420–427
Citation in format AMSBIB
\Bibitem{Tka04}
\by L.~A.~Tkacheva
\paper Plane problem of vibrations of an elastic floating plate under periodic external loading
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2004
\vol 45
\issue 3
\pages 136--145
\mathnet{http://mi.mathnet.ru/pmtf2387}
\elib{https://elibrary.ru/item.asp?id=17249205}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2004
\vol 45
\issue 3
\pages 420--427
\crossref{https://doi.org/10.1023/B:JAMT.0000025025.38066.ab}
Linking options:
  • https://www.mathnet.ru/eng/pmtf2387
  • https://www.mathnet.ru/eng/pmtf/v45/i3/p136
  • This publication is cited in the following 11 articles:
    1. V.A. Babeshko, O.V. Evdokimova, O.M. Babeshko, V.S. Evdokimov, “Tochnoe reshenie dvumernogo integralnogo uravneniya Vinera - Khopfa v zadachakh dlya anizotropnykh sred”, Science in the South of Russia, 2024, no. 1, 3  crossref
    2. Rahul Som, Santanu Manna, J. R. Banerjee, “Propagation of bending waves along the edge of a point-loaded piezoelectric plate on elastic foundation”, Mechanics of Advanced Materials and Structures, 2024, 1  crossref
    3. V. A. Babeshko, O. V. Evdokimova, S. B. Uafa, V. S. Evdokimov, O. M. Babeshko, “On Nonstationary Contact Problems for Anisotropic Composites in Nonclassical Areas”, Mech. Solids, 59:5 (2024), 2667  crossref
    4. Ai-Jun Li, Hui Fang, Yong Liu, “Hydroelastic analysis of interaction between water waves and a floating laminated disk”, Physics of Fluids, 34:4 (2022)  crossref
    5. Vladimir A. Babeshko, Olga V. Evdokimova, Olga M. Babeshko, Advanced Structured Materials, 156, Dynamics and Control of Advanced Structures and Machines, 2022, 13  crossref
    6. V. A. Babeshko, O. V. Evdokimova, O. M. Babeshko, “Investigation of the three-dimensional Helmholtz equation for a wedge using the block element method”, J. Appl. Mech. Tech. Phys., 62:5 (2021), 717–722  mathnet  crossref  crossref  elib
    7. Michael H. Meylan, “Time-Dependent Motion of a Floating Circular Elastic Plate”, Fluids, 6:1 (2021), 29  crossref
    8. V L Zemlyak, E G Rogozhnikova, A S Vasilyev, S V Radionov, “The research of the effectiveness of the ice cover destruction by the resonance method from the pair motion of the load”, J. Phys.: Conf. Ser., 1459:1 (2020), 012002  crossref
    9. Michael H. Meylan, “The time-dependent vibration of forced floating elastic plates by eigenfunction matching in two and three dimensions”, Wave Motion, 88 (2019), 21  crossref
    10. D. N. Ivanov, N. V. Naumova, V. S. Sabaneev, P. E. Tovstik, T. P. Tovstik, “On the frequency spectrum of free vibrations of membranes and plates in contact with a fluid”, Vestnik St.Petersb. Univ.Math., 49:1 (2016), 68  crossref
    11. Cunbao Zhao, Ruifen Liang, Hailin Wang, “Influence of the external loading conditions on the hydroelastic response of floating elastic plates”, Applied Ocean Research, 30:1 (2008), 62  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:56
    Full-text PDF :21
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025