Loading [MathJax]/jax/output/SVG/config.js
Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2005, Volume 46, Issue 6, Pages 26–35 (Mi pmtf2316)  

This article is cited in 8 scientific papers (total in 8 papers)

Invariant and partially invariant solutions of the Green–Naghdi equations

Yu. Yu. Bagderinaa, A. P. Chupakhinb

a Institute of Mathematics, Ural Scientific Center, Russian Academy of Sciences, Ufa, 450077, Russia
b Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk, 630090, Russia
Full-text PDF (221 kB) Citations (8)
Abstract: All invariant and partially invariant solutions of the Green–Naghdi equations are obtained that describe the second approximation of shallow water theory. It is proved that all nontrivial invariant solutions belong to one of the following types: Galilean-invariant, stationary, and self-similar solutions. The Galilean-invariant solutions are described by the solutions of the second Painleve equation, the stationary solutions by elliptic functions, and the self-similar solutions by the solutions of the system of ordinary differential equations of the fourth order. It is shown that all partially invariant solutions reduce to invariant solutions.
Keywords: Green–Naghdi equations, invariant and partially invariant solutions, Painleve equation.
Received: 27.01.2005
English version:
Journal of Applied Mechanics and Technical Physics, 2005, Volume 46, Issue 6, Pages 791–799
DOI: https://doi.org/10.1007/s10808-005-0136-z
Bibliographic databases:
Document Type: Article
UDC: 517.9; 532.592
Language: Russian
Citation: Yu. Yu. Bagderina, A. P. Chupakhin, “Invariant and partially invariant solutions of the Green–Naghdi equations”, Prikl. Mekh. Tekh. Fiz., 46:6 (2005), 26–35; J. Appl. Mech. Tech. Phys., 46:6 (2005), 791–799
Citation in format AMSBIB
\Bibitem{BagChu05}
\by Yu.~Yu.~Bagderina, A.~P.~Chupakhin
\paper Invariant and partially invariant solutions of the Green--Naghdi equations
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2005
\vol 46
\issue 6
\pages 26--35
\mathnet{http://mi.mathnet.ru/pmtf2316}
\elib{https://elibrary.ru/item.asp?id=15175980}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2005
\vol 46
\issue 6
\pages 791--799
\crossref{https://doi.org/10.1007/s10808-005-0136-z}
Linking options:
  • https://www.mathnet.ru/eng/pmtf2316
  • https://www.mathnet.ru/eng/pmtf/v46/i6/p26
  • This publication is cited in the following 8 articles:
    1. Alexei Cheviakov, Peng Zhao, CMS/CAIMS Books in Mathematics, 10, Analytical Properties of Nonlinear Partial Differential Equations, 2024, 79  crossref
    2. S. V. Meleshko, P. Siriwat, “Group classification of two-dimensional Green–Naghdi equations in the case of time-independent bottom topography”, J. Appl. Mech. Tech. Phys., 63:6 (2022), 972–983  mathnet  crossref  crossref  mathscinet  elib
    3. E. I. Kaptsov, S. V. Meleshko, N. F. Samatova, “The one-dimensional Green–Naghdi equations with a time dependent bottom topography and their conservation laws”, Physics of Fluids, 32:12 (2020)  crossref
    4. Piyanuch Siriwat, Sergey V. Meleshko, “Group properties of the extended Green–Naghdi equations”, Applied Mathematics Letters, 81 (2018), 1  crossref
    5. Piyanuch Siriwat, Chompit Kaewmanee, Sergey V. Meleshko, “Symmetries of the hyperbolic shallow water equations and the Green–Naghdi model in Lagrangian coordinates”, International Journal of Non-Linear Mechanics, 86 (2016), 185  crossref
    6. A. Hematulin, P. Siriwat, “Invariant solutions of the special model of fluids with internal inertia”, Communications in Nonlinear Science and Numerical Simulation, 14:5 (2009), 2111  crossref
    7. P. Voraka, S. V. Meleshko, “Group classification of one-dimensional equations of fluids with internal energy depending on the density and the gradient of the density”, Continuum Mech. Thermodyn., 20:7 (2009), 397  crossref
    8. Apichai Hematulin, Sergey V. Meleshko, Sergey L. Gavrilyuk, “Group classification of one‐dimensional equations of fluids with internal inertia”, Math Methods in App Sciences, 30:16 (2007), 2101  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:80
    Full-text PDF :22
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025