Loading [MathJax]/jax/output/SVG/config.js
Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2005, Volume 46, Issue 5, Pages 180–186 (Mi pmtf2313)  

This article is cited in 15 scientific papers (total in 15 papers)

Singular solutions in an axisymmetric flow of a medium obeying the double shear model

S. E. Aleksandrov

Institute of Problems in Mechanics, Russian Academy of Sciences, Moscow, 119526
Abstract: An asymptotic analysis of equations of an axisymmetric flow of a rigid-plastic material obeying the double shear model in the vicinity of surfaces with the maximum friction is performed. It is shown that the solution is singular if the friction surface coincides with the envelope of the family of characteristics. A possible character of the behavior of singular solutions in the vicinity of surfaces with the maximum friction is determined. In particular, the equivalent strain rate in the vicinity of the friction surface tends to infinity in an inverse proportion to the square root from the distance to this surface. Such a behavior of the equivalent strain rate is also observed in the classical theory of plasticity of materials whose yield condition is independent of the mean stress.
Keywords: singularity, friction, double shear model, plasticity.
Received: 22.12.2004
English version:
Journal of Applied Mechanics and Technical Physics, 2005, Volume 46, Issue 5, Pages 766–771
DOI: https://doi.org/10.1007/s10808-005-0133-2
Bibliographic databases:
Document Type: Article
UDC: 539.374
Language: Russian
Citation: S. E. Aleksandrov, “Singular solutions in an axisymmetric flow of a medium obeying the double shear model”, Prikl. Mekh. Tekh. Fiz., 46:5 (2005), 180–186; J. Appl. Mech. Tech. Phys., 46:5 (2005), 766–771
Citation in format AMSBIB
\Bibitem{Ale05}
\by S.~E.~Aleksandrov
\paper Singular solutions in an axisymmetric flow of a medium obeying the double shear model
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2005
\vol 46
\issue 5
\pages 180--186
\mathnet{http://mi.mathnet.ru/pmtf2313}
\elib{https://elibrary.ru/item.asp?id=15175977}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2005
\vol 46
\issue 5
\pages 766--771
\crossref{https://doi.org/10.1007/s10808-005-0133-2}
Linking options:
  • https://www.mathnet.ru/eng/pmtf2313
  • https://www.mathnet.ru/eng/pmtf/v46/i5/p180
  • This publication is cited in the following 15 articles:
    1. Sergei Alexandrov, SpringerBriefs in Applied Sciences and Technology, Singular Solutions in Plasticity, 2018, 1  crossref
    2. Maurizio Facchinetti, Wiktoria Miszuris, “Analysis of the maximum friction condition for green body forming in an ANSYS environment”, Journal of the European Ceramic Society, 36:9 (2016), 2295  crossref
    3. Sergei Alexandrov, Elena Lyamina, Yeau-Ren Jeng, Engineering Materials, Plasticity of Pressure-Sensitive Materials, 2014, 253  crossref
    4. Yu Huang, Chongqiang Zhu, Xiang Xiang, “Granular Flow Under Microgravity: A Preliminary Review”, Microgravity Sci. Technol., 26:2 (2014), 131  crossref
    5. Sergei Alexandrov, Elena Lyamina, Hguyen Minh Tuan, Natalia Kalenova, “Effect of Plastic Anisotropy on the Strain Rate Intensity Factor: A Simple Analytic Solution”, KEM, 626 (2014), 240  crossref
    6. Sergei Alexandrov, Yeau-Ren Jeng, “Influence of pressure dependence of the yield criterion on the strain-rate-intensity factor”, J Eng Math, 71:4 (2011), 339  crossref
    7. S. E. Aleksandrov, “Behavior of anisotropic plastic solutions in the vicinity of maximum-friction surfaces”, J. Appl. Mech. Tech. Phys., 52:3 (2011), 483–490  mathnet  mathnet  crossref
    8. Elena Lyamina, Sergei Alexandrov, Lecture Notes in Applied and Computational Mechanics, 58, Trends in Computational Contact Mechanics, 2011, 291  crossref
    9. Sergei Alexandrov, David Harris, “An exact solution for a model of pressure-dependent plasticity in an un-steady plane strain process”, European Journal of Mechanics - A/Solids, 29:6 (2010), 966  crossref
    10. Olga Chesnikova, Alexander Pirumov, Sergei Alexandrov, “Exact Solutions for Powder Plastic Materials”, AMR, 89-91 (2010), 221  crossref
    11. Sergei Alexandrov, Gennady Mishuris, “Qualitative behaviour of viscoplastic solutions in the vicinity of maximum-friction surfaces”, J Eng Math, 65:2 (2009), 143  crossref
    12. S. E. Aleksandrov, “Specific features of solving the problem of compression of an orthotropic plastic material between rotating plates”, J. Appl. Mech. Tech. Phys., 50:5 (2009), 886–890  mathnet  mathnet  crossref
    13. S. E. Aleksandrov, E. A. Lyamina, “Strain-rate intensity factor in compression of a layer of a plastic material between cylindrical surfaces”, J. Appl. Mech. Tech. Phys., 50:3 (2009), 504–511  mathnet  mathnet  crossref
    14. S. Alexandrov, E. Lyamina, “Flow of pressure-dependent plastic material between two rough conical walls”, Acta Mechanica, 187:1-4 (2006), 37  crossref
    15. Sergei Alexandrov, “Maximum friction law in plasticity”, Proc Appl Math and Mech, 6:1 (2006), 349  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:41
    Full-text PDF :15
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025