Abstract:
The two-dimensional Green–Naghdi equations are investigated in the case of an uneven bottom topography. The function which determines the topography of the bottom and may depend on time is considered. A group classification of the equations under study with respect to the function describing the bottom topography is carried out using an algebraic approach.
Keywords:
group classification, equivalence group, admissible Lee group, Green–Naghdi equations.
Citation:
S. V. Meleshko, P. Siriwat, “Group classification of two-dimensional Green–Naghdi equations in the case of time-independent bottom topography”, Prikl. Mekh. Tekh. Fiz., 63:6 (2022), 68–81; J. Appl. Mech. Tech. Phys., 63:6 (2022), 972–983
\Bibitem{MelSir22}
\by S.~V.~Meleshko, P.~Siriwat
\paper Group classification of two-dimensional Green--Naghdi equations in the case of time-independent bottom topography
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2022
\vol 63
\issue 6
\pages 68--81
\mathnet{http://mi.mathnet.ru/pmtf230}
\crossref{https://doi.org/10.15372/PMTF20220608}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4560671}
\elib{https://elibrary.ru/item.asp?id=49930290}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2022
\vol 63
\issue 6
\pages 972--983
\crossref{https://doi.org/10.1134/S0021894422060086}
Linking options:
https://www.mathnet.ru/eng/pmtf230
https://www.mathnet.ru/eng/pmtf/v63/i6/p68
This publication is cited in the following 1 articles:
Yu A. Chirkunov, M. Yu Chirkunov, “New nonlinear models of dynamic longitudinal deformation of a viscoelastic rod”, International Journal of Non-Linear Mechanics, 160 (2024), 104654