Loading [MathJax]/jax/output/SVG/config.js
Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2005, Volume 46, Issue 3, Pages 153–164 (Mi pmtf2274)  

This article is cited in 28 scientific papers (total in 28 papers)

Deformation of an ellipsoidal ferrogel sample in a uniform magnetic field

Yu. L. Raikher, O. V. Stolbov

Institute of Mechanics of Continuous Media, Ural Division, Russian Academy of Science, Perm’, 614013
Abstract: The elongation of a ferroelastic material sample (whose initial shape is a sphere or an ellipsoid of revolution) under the action of an external magnetic field is studied in an in approximation of small strains. For a sphere, there is a classical estimate obtained under the assumption that elongating in the direction of the field, it becomes a spheroid and the stress and strain fields remain uniform. In the present calculation, it is assumed that the body is an ellipsoid (a sphere in a particular case) only in the absence of an external field; the shape of the sample in the presence of a field is not specified in advance but is found from the condition of balance of surface forces (elastic and magnetic). For the spherical case, the problem is solved exactly: it is shown, that the contour of the deformed body is described by a third-order algebraic equation. The case where the initial configuration is an ellipsoid of revolution is studied numerically. It is shown that in all versions, the refined solution leads to an appreciable increase in the elongation of the sample compared to the classical estimate.
Keywords: small strains, ferrogel, magnetoelasticity, magnetic-deformation effect.
Received: 15.01.2004
English version:
Journal of Applied Mechanics and Technical Physics, 2005, Volume 46, Issue 3, Pages 434–443
DOI: https://doi.org/10.1007/s10808-005-0094-5
Bibliographic databases:
Document Type: Article
UDC: 538.65: 539.38
Language: Russian
Citation: Yu. L. Raikher, O. V. Stolbov, “Deformation of an ellipsoidal ferrogel sample in a uniform magnetic field”, Prikl. Mekh. Tekh. Fiz., 46:3 (2005), 153–164; J. Appl. Mech. Tech. Phys., 46:3 (2005), 434–443
Citation in format AMSBIB
\Bibitem{RaiSto05}
\by Yu.~L.~Raikher, O.~V.~Stolbov
\paper Deformation of an ellipsoidal ferrogel sample in a uniform magnetic field
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2005
\vol 46
\issue 3
\pages 153--164
\mathnet{http://mi.mathnet.ru/pmtf2274}
\elib{https://elibrary.ru/item.asp?id=15175938}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2005
\vol 46
\issue 3
\pages 434--443
\crossref{https://doi.org/10.1007/s10808-005-0094-5}
Linking options:
  • https://www.mathnet.ru/eng/pmtf2274
  • https://www.mathnet.ru/eng/pmtf/v46/i3/p153
  • This publication is cited in the following 28 articles:
    1. O. V. Stolbov, Yu. L. Raikher, “Striction-Induced Stresses in a Magnetoactive Elastomer”, Bull. Russ. Acad. Sci. Phys., 88:4 (2024), 586  crossref
    2. Qimin Liu, The Mechanics of Hydrogels, 2022, 289  crossref
    3. Philipp Gebhart, Abdolhamid Attaran, Thomas Wallmersperger, “Multiphysics modeling of porous ferrogels at finite strains”, Physical Sciences Reviews, 7:11 (2022), 1209  crossref
    4. Qimin Liu, Xin Ye, Hangyu Wu, Xingyu Zhang, “A multiphysics model of magnetic hydrogel under a moving magnet for targeted drug delivery”, International Journal of Mechanical Sciences, 215 (2022), 106963  crossref
    5. O. V. Stolbov, Yu. L. Raikher, “Deformation of a sphere made of magnetoactive elastomer under a strong uniform magnetic field”, J. Phys.: Conf. Ser., 1945:1 (2021), 012056  crossref
    6. Xiaocheng Hu, Yimou Fu, Tonghao Wu, Shaoxing Qu, “Study of non-uniform axial magnetic field induced deformation of a soft cylindrical magneto-active actuator”, Soft Matter, 17:32 (2021), 7498  crossref
    7. Qimin Liu, Muyu Liu, Hua Li, K.Y. Lam, “Multiphysics modeling of responsive deformation of dual magnetic-pH-sensitive hydrogel”, International Journal of Solids and Structures, 190 (2020), 76  crossref
    8. Oleg Stolbov, Yuriy Raikher, “Large-Scale Shape Transformations of a Sphere Made of a Magnetoactive Elastomer”, Polymers, 12:12 (2020), 2933  crossref
    9. Oleg V. Stolbov, Yuriy L. Raikher, “Magnetostriction effect in soft magnetic elastomers”, Arch Appl Mech, 89:1 (2019), 63  crossref
    10. Felix A. Reich, Wilhelm Rickert, Wolfgang H. Müller, “An investigation into electromagnetic force models: differences in global and local effects demonstrated by selected problems”, Continuum Mech. Thermodyn., 30:2 (2018), 233  crossref
    11. Qimin Liu, Hua Li, K.Y. Lam, “Model development and numerical simulation of magnetic-sensitive hydrogels subject to an externally applied magnetic field”, Procedia Engineering, 214 (2017), 93  crossref
    12. Qimin Liu, Hua Li, K. Y. Lam, “Development of a Multiphysics Model to Characterize the Responsive Behavior of Magnetic-Sensitive Hydrogels with Finite Deformation”, J. Phys. Chem. B, 121:22 (2017), 5633  crossref
    13. Felix A. Reich, Wilhelm Rickert, Oliver Stahn, Wolfgang H. Müller, “Magnetostriction of a sphere: stress development during magnetization and residual stresses due to the remanent field”, Continuum Mech. Thermodyn., 29:2 (2017), 535  crossref
    14. Adrienne Crivaro, Robert Sheridan, Mary Frecker, Timothy W Simpson, Paris Von Lockette, “Bistable compliant mechanism using magneto active elastomer actuation”, Journal of Intelligent Material Systems and Structures, 27:15 (2016), 2049  crossref
    15. Robert Sheridan, Juan Roche, Samuel E Lofland, Paris R vonLockette, “Numerical simulation and experimental validation of the large deformation bending and folding behavior of magneto-active elastomer composites”, Smart Mater. Struct., 23:9 (2014), 094004  crossref
    16. A.Yu. Zubarev, Ashraf S. Elkady, “Magnetodeformation and elastic properties of ferrogels and ferroelastomers”, Physica A: Statistical Mechanics and its Applications, 413 (2014), 400  crossref
    17. E. Roeben, L. Roeder, R. Messing, N. Frickel, G. Marten, T. Gelbrich, A. M. Schmidt, Intelligent Hydrogels, 2013, 131  crossref
    18. Oleg V. Stolbov, Yuriy L. Raikher, Maria Balasoiu, “Modelling of magnetodipolar striction in soft magnetic elastomers”, Soft Matter, 7:18 (2011), 8484  crossref
    19. Dean S. Wood, Philip J. Camp, “Modeling the properties of ferrogels in uniform magnetic fields”, Phys. Rev. E, 83:1 (2011)  crossref
    20. L E Faidley, Y Han, K Tucker, S Timmons, W Hong, “Axial strain of ferrogels under cyclic magnetic fields”, Smart Mater. Struct., 19:7 (2010), 075001  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:59
    Full-text PDF :32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025