Loading [MathJax]/jax/output/SVG/config.js
Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2006, Volume 47, Issue 2, Pages 165–175 (Mi pmtf2141)  

This article is cited in 15 scientific papers (total in 15 papers)

Dynamic stability of viscoelastic plates under increasing compressing loads

B. Kh. Eshmatov

Tashkent Institute of Irrigation and Amelioration, Tashkent, 700000, Uzbekistan
Abstract: The dynamic stability problem of viscoelastic orthotropic and isotropic plates is considered in a geometrically nonlinear formulation using the generalized Timoshenko theory. The problem is solved by the Bubnov–Galerkin procedure combined with a numerical method based on quadrature formulas. The effect of viscoelastic and inhomogeneous properties of the material on the dynamic stability of a plate is discussed.
Keywords: Timoshenko theory, dynamic stability, viscoelasticity, Bubnov–Galerkin method.
Received: 18.05.2005
English version:
Journal of Applied Mechanics and Technical Physics, 2006, Volume 47, Issue 2, Pages 289–297
DOI: https://doi.org/10.1007/s10808-006-0055-7
Bibliographic databases:
Document Type: Article
UDC: 539.1
Language: Russian
Citation: B. Kh. Eshmatov, “Dynamic stability of viscoelastic plates under increasing compressing loads”, Prikl. Mekh. Tekh. Fiz., 47:2 (2006), 165–175; J. Appl. Mech. Tech. Phys., 47:2 (2006), 289–297
Citation in format AMSBIB
\Bibitem{Esh06}
\by B.~Kh.~Eshmatov
\paper Dynamic stability of viscoelastic plates under increasing compressing loads
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2006
\vol 47
\issue 2
\pages 165--175
\mathnet{http://mi.mathnet.ru/pmtf2141}
\elib{https://elibrary.ru/item.asp?id=16515874}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2006
\vol 47
\issue 2
\pages 289--297
\crossref{https://doi.org/10.1007/s10808-006-0055-7}
Linking options:
  • https://www.mathnet.ru/eng/pmtf2141
  • https://www.mathnet.ru/eng/pmtf/v47/i2/p165
  • This publication is cited in the following 15 articles:
    1. Nasrin Jafari, “Non-harmonic resonance of viscoelastic structures subjected to time-dependent exponentially decreasing transverse distributed loads”, Earthq. Eng. Eng. Vib., 22:3 (2023), 825  crossref
    2. Nasrin Jafari, Mojtaba Azhari, “Dynamic stability analysis of Mindlin viscoelastic plates subjected to constant and harmonic in-plane compressions based on free vibration analysis of elastic plates”, Acta Mech, 233:6 (2022), 2287  crossref
    3. Nasrin Jafari, Mojtaba Azhari, “On the viscoelastic instability of Timoshenko viscoelastic beams and Mindlin viscoelastic plates under compressive loads”, Mech Time-Depend Mater, 2022  crossref
    4. E. Kosheleva, Lecture Notes in Civil Engineering, 189, XXX Russian-Polish-Slovak Seminar Theoretical Foundation of Civil Engineering (RSP 2021), 2022, 334  crossref
    5. Rustamkhan Abdikarimov, Marco Amabili, Nikolai Ivanovich Vatin, Dadakhan Khodzhaev, “Dynamic Stability of Orthotropic Viscoelastic Rectangular Plate of an Arbitrarily Varying Thickness”, Applied Sciences, 11:13 (2021), 6029  crossref
    6. Matin Latifi, Mahsa Kharazi, Hamid Reza Ovesy, “Nonlinear dynamic instability analysis of sandwich beams with integral viscoelastic core using different criteria”, Composite Structures, 191 (2018), 89  crossref
    7. M. Latifi, M. Kharazi, H.R. Ovesy, “Effect of integral viscoelastic core on the nonlinear dynamic behaviour of composite sandwich beams with rectangular cross sections”, International Journal of Mechanical Sciences, 123 (2017), 141  crossref
    8. M Ermis, N Eratlı, H Argeso, A Kutlu, MH Omurtag, “Parametric analysis of viscoelastic hyperboloidal helical rod”, Advances in Structural Engineering, 19:9 (2016), 1420  crossref
    9. Hong-Liang Dai, Li-Li Qi, Hai-Bo Liu, “Thermoviscoelastic dynamic response for a composite material thin narrow strip”, J Mech Sci Technol, 29:2 (2015), 625  crossref
    10. Hossein Amoushahi, Mojtaba Azhari, “Static analysis and buckling of viscoelastic plates by a fully discretized nonlinear finite strip method using bubble functions”, Composite Structures, 100 (2013), 205  crossref
    11. M. Shariyat, “A nonlinear double-superposition global–local theory for dynamic buckling of imperfect viscoelastic composite/sandwich plates: A hierarchical constitutive model”, Composite Structures, 93:7 (2011), 1890  crossref
    12. B. Kh. Eshmatov, “Nonlinear vibrations of viscoelastic cylindrical shells taking into account shear deformation and rotatory inertia”, Nonlinear Dyn, 50:1-2 (2007), 353  crossref
    13. D. A. Khodzhaev, B. Kh. Eshmatov, “Nonlinear vibrations of a viscoelastic plate with concentrated masses”, J. Appl. Mech. Tech. Phys., 48:6 (2007), 905–914  mathnet  mathnet  crossref
    14. Bakhtiyor Eshmatov, Subrata Mukherjee, “Nonlinear Vibrations of Viscoelastic Composite Cylindrical Panels”, Journal of Vibration and Acoustics, 129:3 (2007), 285  crossref
    15. B.Kh. Eshmatov, “Nonlinear vibrations and dynamic stability of viscoelastic orthotropic rectangular plates”, Journal of Sound and Vibration, 300:3-5 (2007), 709  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:64
    Full-text PDF :26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025