|
This article is cited in 1 scientific paper (total in 1 paper)
Behavior of co-flow jets coupled with a longitudinal perturbation
D. Soltani, M. Shafaee Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
Abstract:
In this study, a numerical simulation is used to show the physics of a coupled forced perturbation and liquid jet in the presence of a low-velocity coaxial gas flow. The volume of fluid (VOF) approach is employed to capture the liquid–gas interface. A sinusoidal velocity with a finite frequency and amplitude is applied at the liquid jet inlet to define a forced perturbation. An annular gas flow with a velocity lower than that of the liquid jet is imposed to examine its influence on the liquid jet breakup mechanism. The annular gas flow is modulated by the sinusoidal velocity inlet, and the effect of this flow on the liquid jet breakup mechanism is analyzed. Different ratios of the gas velocity to liquid velocity are studied. The results indicate that the low-velocity gas flow can considerably affect the behavior of the liquid jet, and this effect becomes more significant as the amplitude of the forced perturbation increases.
Keywords:
liquid jet, coaxial gas flow, forced perturbation, primary breakup, VOF.
Received: 18.03.2020 Revised: 20.05.2020 Accepted: 25.05.2020
Citation:
D. Soltani, M. Shafaee, “Behavior of co-flow jets coupled with a longitudinal perturbation”, Prikl. Mekh. Tekh. Fiz., 62:1 (2021), 70–77; J. Appl. Mech. Tech. Phys., 62:1 (2021), 63–69
Linking options:
https://www.mathnet.ru/eng/pmtf209 https://www.mathnet.ru/eng/pmtf/v62/i1/p70
|
|