Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2007, Volume 48, Issue 3, Pages 164–172 (Mi pmtf2041)  

This article is cited in 6 scientific papers (total in 6 papers)

Deformation model for brittle materials and the structure of failure waves

E. I. Romenskii

Sobolev Institute of Mathematics, Siberian Division, Russian Academy of Sciences, Novosibirsk, 630090
Full-text PDF (244 kB) Citations (6)
Abstract: Constitutive equations that describe the experimentally observed failure waves are proposed to model inelastic strains of brittle materials. The complete system of equations is hyperbolic, each equation of this system has divergent form. The model is based on the assumption that continual failure is the process of transition from an intact state to a “fully damaged” state described by the kinetics of the order parameter. The structure of stationary traveling compressive waves is analyzed using a simplified model. It is shown that in a certain range of amplitudes, the wave splits into an elastic precursor and a failure wave.
Keywords: inelastic strain of brittle materials, failure waves, shock-wave structure.
Received: 26.06.2006
English version:
Journal of Applied Mechanics and Technical Physics, 2007, Volume 48, Issue 3, Pages 437–444
DOI: https://doi.org/10.1007/s10808-007-0054-3
Bibliographic databases:
Document Type: Article
UDC: 539.3
Language: Russian
Citation: E. I. Romenskii, “Deformation model for brittle materials and the structure of failure waves”, Prikl. Mekh. Tekh. Fiz., 48:3 (2007), 164–172; J. Appl. Mech. Tech. Phys., 48:3 (2007), 437–444
Citation in format AMSBIB
\Bibitem{Rom07}
\by E.~I.~Romenskii
\paper Deformation model for brittle materials and the structure of failure waves
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2007
\vol 48
\issue 3
\pages 164--172
\mathnet{http://mi.mathnet.ru/pmtf2041}
\elib{https://elibrary.ru/item.asp?id=17425629}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2007
\vol 48
\issue 3
\pages 437--444
\crossref{https://doi.org/10.1007/s10808-007-0054-3}
Linking options:
  • https://www.mathnet.ru/eng/pmtf2041
  • https://www.mathnet.ru/eng/pmtf/v48/i3/p164
  • This publication is cited in the following 6 articles:
    1. Jorge N. Hayek, Dave A. May, Casper Pranger, Alice‐Agnes Gabriel, “A Diffuse Interface Method for Earthquake Rupture Dynamics Based on a Phase‐Field Model”, JGR Solid Earth, 128:12 (2023)  crossref
    2. Casper Pranger, Patrick Sanan, Dave A. May, Laetitia Le Pourhiet, Alice‐Agnes Gabriel, “Rate and State Friction as a Spatially Regularized Transient Viscous Flow Law”, JGR Solid Earth, 127:6 (2022)  crossref
    3. A.-A. Gabriel, D. Li, S. Chiocchetti, M. Tavelli, I. Peshkov, E. Romenski, M. Dumbser, “A unified first-order hyperbolic model for nonlinear dynamic rupture processes in diffuse fracture zones”, Phil. Trans. R. Soc. A., 379:2196 (2021), 20200130  crossref
    4. Maurizio Tavelli, Simone Chiocchetti, Evgeniy Romenski, Alice-Agnes Gabriel, Michael Dumbser, “Space-time adaptive ADER discontinuous Galerkin schemes for nonlinear hyperelasticity with material failure”, Journal of Computational Physics, 422 (2020), 109758  crossref
    5. Ilya Peshkov, Walter Boscheri, Raphaël Loubère, Evgeniy Romenski, Michael Dumbser, “Theoretical and numerical comparison of hyperelastic and hypoelastic formulations for Eulerian non-linear elastoplasticity”, Journal of Computational Physics, 387 (2019), 481  crossref
    6. Maurizio Tavelli, Michael Dumbser, Dominic Etienne Charrier, Leonhard Rannabauer, Tobias Weinzierl, Michael Bader, “A simple diffuse interface approach on adaptive Cartesian grids for the linear elastic wave equations with complex topography”, Journal of Computational Physics, 386 (2019), 158  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:64
    Full-text PDF :19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025