Abstract:
We study the boundary-layer approximation of the classical mathematical model that describes the discharge of a laminar hot gas in a stagnant colder atmosphere of the same gas. We prove the existence and uniqueness of solutions to a nondegenerate problem (without zones of stagnation of gas temperature or velocity). The asymptotic behavior of these solutions is also studied.
Keywords:
systems of nonlinear degenerate parabolic equations, diffusion coupling, temperature gas jets, asymptotic behavior.
Citation:
S. N. Antontsev, Kh. I. Dias, “Mathematical treatment of the discharge of a laminar hot gas in a stagnant colder atmosphere”, Prikl. Mekh. Tekh. Fiz., 49:4 (2008), 192–205; J. Appl. Mech. Tech. Phys., 49:4 (2008), 681–692
\Bibitem{AntDia08}
\by S.~N.~Antontsev, Kh.~I.~Dias
\paper Mathematical treatment of the discharge of a laminar hot gas in a stagnant colder atmosphere
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2008
\vol 49
\issue 4
\pages 192--205
\mathnet{http://mi.mathnet.ru/pmtf1939}
\elib{https://elibrary.ru/item.asp?id=11784362}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2008
\vol 49
\issue 4
\pages 681--692
\crossref{https://doi.org/10.1007/s10808-008-0085-4}
Linking options:
https://www.mathnet.ru/eng/pmtf1939
https://www.mathnet.ru/eng/pmtf/v49/i4/p192
This publication is cited in the following 3 articles:
S. N. ANTONTSEV, J. I. DÍAZ, “NEW L1-GRADIENT TYPE ESTIMATES OF SOLUTIONS TO ONE-DIMENSIONAL QUASILINEAR PARABOLIC SYSTEMS”, Commun. Contemp. Math., 12:01 (2010), 85
S. Antontsev, J. I. Díaz, “On gradient estimates and other qualitative properties of solutions of nonlinear non autonomous parabolic systems”, Rev. R. Acad. Cien. Serie A. Mat., 103:1 (2009), 201
S. N. Antontsev, Kh. I. Dias, “Mathematical treatment of the discharge of a laminar hot gas in a stagnant colder atmosphere”, J. Appl. Mech. Tech. Phys., 49:4 (2008), 681–692