Loading [MathJax]/jax/output/CommonHTML/config.js
Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2008, Volume 49, Issue 3, Pages 184–196 (Mi pmtf1921)  

This article is cited in 5 scientific papers (total in 5 papers)

Evolutionary model of finite-strain thermoelasticity

A. A. Rogovoi, O. S. Stolbova

Institute of Mechanics of Continuous Media, Ural Division, Russian Academy of Sciences, Perm’, 614013
Full-text PDF (290 kB) Citations (5)
Abstract: The equation of state of finite-strain thermoelasticity is obtained using a formalized approach to constructing constitutive relations for complex media under the assumption of closeness of intermediate and current configurations. A variational formulation of the coupled thermoelastic problem is proposed. The constitutive equation, the heat-conduction equation, the relations for internal energy, free energy, and entropy, and the variational formulation of the coupled problem of finite-strain thermoelasticity are tested on the problem of uniaxial extension of a bar. The model adequately describes experimental data for elastomers, such as entropic elasticity, temperature inversion, and temperature variation during an adiabatic process.
Keywords: thermoelasticity, finite strains, slight compressibility, constitutive equations, heat-conduction equation, testing of model.
Received: 15.02.2007
Accepted: 07.06.2007
English version:
Journal of Applied Mechanics and Technical Physics, 2008, Volume 49, Issue 3, Pages 500–509
DOI: https://doi.org/10.1007/s10808-008-0067-6
Bibliographic databases:
Document Type: Article
UDC: 539.3
Language: Russian
Citation: A. A. Rogovoi, O. S. Stolbova, “Evolutionary model of finite-strain thermoelasticity”, Prikl. Mekh. Tekh. Fiz., 49:3 (2008), 184–196; J. Appl. Mech. Tech. Phys., 49:3 (2008), 500–509
Citation in format AMSBIB
\Bibitem{RogSto08}
\by A.~A.~Rogovoi, O.~S.~Stolbova
\paper Evolutionary model of finite-strain thermoelasticity
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2008
\vol 49
\issue 3
\pages 184--196
\mathnet{http://mi.mathnet.ru/pmtf1921}
\elib{https://elibrary.ru/item.asp?id=11665351}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2008
\vol 49
\issue 3
\pages 500--509
\crossref{https://doi.org/10.1007/s10808-008-0067-6}
Linking options:
  • https://www.mathnet.ru/eng/pmtf1921
  • https://www.mathnet.ru/eng/pmtf/v49/i3/p184
  • This publication is cited in the following 5 articles:
    1. E. M. Solnechnyi, “Studying the Dynamic Properties of a Distributed Thermomechanical Controlled Plant with Intrinsic Feedback. II”, Autom Remote Control, 84:4 (2023), 348  crossref
    2. Farshad Shakeriaski, Maryam Ghodrat, Juan Escobedo-Diaz, Masud Behnia, “Modified Green–Lindsay thermoelasticity wave propagation in elastic materials under thermal shocks”, Journal of Computational Design and Engineering, 8:1 (2021), 36  crossref
    3. E. M. Solnechnyi, “Studying the dynamic properties of a distributed thermomechanical system and stability conditions for its control system”, Autom. Remote Control, 82:8 (2021), 1338–1357  mathnet  mathnet  crossref  crossref  isi  scopus
    4. E. M. Solnechnyi, “Studying the dynamic properties of a distributed thermomechanical controlled plant with intrinsic feedback. I”, Autom. Remote Control, 81:4 (2020), 614–621  mathnet  mathnet  crossref  crossref  isi  scopus
    5. Anatoly A. Rogovoy, “Formalized approach to construction of the state equations for complex media under finite deformations”, Continuum Mech. Thermodyn., 24:2 (2012), 81  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:51
    Full-text PDF :21
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025