Loading [MathJax]/jax/output/SVG/config.js
Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2009, Volume 50, Issue 2, Pages 16–23 (Mi pmtf1712)  

This article is cited in 12 scientific papers (total in 12 papers)

Exact solutions of the equations of motion for an incompressible viscoelastic Maxwell medium

V. V. Pukhnachev

Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk, 630090, Russia
Abstract: The unsteady plane-parallel motion of a incompressible viscoelastic Maxwell medium with constant relaxation time is considered. The equations of motion of the medium and the rheological relation admit an extended Galilean group. The class of solutions of this system which are partially invariant with respect to the subgroup of the indicated group generated by translation and Galilean translation along one of the coordinate axes is studied. The system does not have invariant solutions, and the set of partially invariant solutions is very narrow. A method for extending the set of exact solutions is proposed which allows finding solutions with a nontrivial dependence of the stress tensor elements on spatial coordinates. Among the solutions obtained by this method, the solutions describing the deformation of a viscoelastic strip with free boundaries is of special interest from a point of view of physics.
Keywords: viscoelastic medium, incompressibility, Maxwell relation, Galilean group, partially invariant solution, free boundary motion.
Received: 09.01.2008
English version:
Journal of Applied Mechanics and Technical Physics, 2009, Volume 50, Issue 2, Pages 181–187
DOI: https://doi.org/10.1007/s10808-009-0025-y
Bibliographic databases:
Document Type: Article
UDC: 532.135
Language: Russian
Citation: V. V. Pukhnachev, “Exact solutions of the equations of motion for an incompressible viscoelastic Maxwell medium”, Prikl. Mekh. Tekh. Fiz., 50:2 (2009), 16–23; J. Appl. Mech. Tech. Phys., 50:2 (2009), 181–187
Citation in format AMSBIB
\Bibitem{Puk09}
\by V.~V.~Pukhnachev
\paper Exact solutions of the equations of motion for an incompressible viscoelastic Maxwell medium
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2009
\vol 50
\issue 2
\pages 16--23
\mathnet{http://mi.mathnet.ru/pmtf1712}
\elib{https://elibrary.ru/item.asp?id=11839324}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2009
\vol 50
\issue 2
\pages 181--187
\crossref{https://doi.org/10.1007/s10808-009-0025-y}
Linking options:
  • https://www.mathnet.ru/eng/pmtf1712
  • https://www.mathnet.ru/eng/pmtf/v50/i2/p16
  • This publication is cited in the following 12 articles:
    1. V. Yu. Lyapidevskii, V. V. Neverov, S. R. Karmushin, “Giperbolicheskie modeli nestatsionarnykh techenii vyazkouprugoi sredy”, Prikl. mekh. tekhn. fiz., 65:5 (2024), 117–129  mathnet  crossref
    2. A. N. Popkov, “Analytical solution of boundary layer equations for a nonlinearly viscous dilatant fluid on a flat plate in the case with mass transfer”, J. Appl. Mech. Tech. Phys., 65:4 (2024), 624–628  mathnet  crossref  crossref  elib
    3. E. Yu. Prosviryakov, “New Class of Exact Solutions of Navier–Stokes Equations with Exponential Dependence of Velocity on Two Spatial Coordinates”, Theor Found Chem Eng, 53:1 (2019), 107  crossref
    4. Vladislav V. Pukhnachev, Elena Yu. Fominykh, “Symmetries in equations of incompressible viscoelastic Maxwell medium*”, Lith Math J, 58:3 (2018), 309  crossref
    5. E. Yu. Prosviryakov, L. F. Spevak, “Layered Three-Dimensional Nonuniform Viscous Incompressible Flows”, Theor Found Chem Eng, 52:5 (2018), 765  crossref
    6. A. A. Kosov, E. I. Semenov, “Multidimensional exact solutions to the reaction-diffusion system with power-law nonlinear terms”, Siberian Math. J., 58:4 (2017), 619–632  mathnet  mathnet  crossref  crossref  isi  scopus
    7. Andrei D. Polyanin, Sergei A. Lychev, “Decomposition methods for coupled 3D equations of applied mathematics and continuum mechanics: Partial survey, classification, new results, and generalizations”, Applied Mathematical Modelling, 40:4 (2016), 3298  crossref
    8. A. A. Kosov, E. I. Semenov, “Multidimensional exact solutions of a nonlinear system of two parabolic equations”, Siberian Math. J., 56:4 (2015), 637–649  mathnet  mathnet  crossref  crossref  isi  scopus
    9. A. A. Kosov, E. I. Semyonov, “Exact radially-symmetric solutions of a class of nonlinear elliptic systems of equations”, Russian Math. (Iz. VUZ), 59:12 (2015), 36–45  mathnet  mathnet  crossref  scopus
    10. Andrei D. Polyanin, Alexei I. Zhurov, “Integration of linear and some model non-linear equations of motion of incompressible fluids”, International Journal of Non-Linear Mechanics, 49 (2013), 77  crossref
    11. A. D. Polyanin, A. V. Vyazmin, “Decomposition of three-dimensional linearized equations for Maxwell and Oldroyd viscoelastic fluids and their generalizations”, Theor Found Chem Eng, 47:4 (2013), 321  crossref
    12. V. V. Pukhnachev, “Mathematical model of an incompressible viscoelastic Maxwell medium”, J. Appl. Mech. Tech. Phys., 51:4 (2010), 546–554  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:79
    Full-text PDF :55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025