Abstract:
The paper presents an analytical solution of the problem of stress relaxation in a bended viscoelastic plate. The effect the difference in the viscous properties of the material in tension and compression on the relaxation of the bending moment is investigated. The deformation is assumed to be finite, and the multiplicative decomposition of the deformation gradient tensor into elastic and inelastic components is used. Two different material models with tension-compression asymmetry are compared.
Citation:
G. M. Sevastyanov, K. S. Bormotin, “Stress relaxation in a bended viscoelastic plate with tension-compression asymmetry”, Prikl. Mekh. Tekh. Fiz., 64:4 (2023), 152–160; J. Appl. Mech. Tech. Phys., 64:4 (2023), 686–692
This publication is cited in the following 4 articles:
S. N. Antontsev, I. V. Kuznetsov, S. A. Sazhenkov, “Impulsnye uravneniya Kelvina–Foigta dinamiki neszhimaemoi vyazkouprugoi zhidkosti”, Prikl. mekh. tekhn. fiz., 65:5 (2024), 28–42
S. N. Antontsev, I. V. Kuznetsov, S. A. Sazhenkov, “Kelvin–Voigt impulse equations of incompressible viscoelastic fluid dynamics”, J. Appl. Mech. Tech. Phys., 65:5 (2024), 815–828
G. M. Sevastyanov, “Stress Relaxation in Bended Viscoelastic Plate with Tension-Compression Asymmetry”, Prikladnaya matematika i mekhanika, 87:5 (2023), 883
G. M. Sevastyanov, “On Stress Relaxation in Bended Viscoelastic Plate with Tension–Compression Asymmetry”, Mech. Solids, 58:8 (2023), 2920