Abstract:
Problems of inelastic straining of three-dimensional bodies with large displacements and turns are considered. In addition to the sought fields, surface forces and boundary displacements have also to be determined in these problems. Experimental justification is given to the proposed constitutive equations of steady creep for transversely isotropic materials with different characteristics under tension and compression. Algorithms and results of the finite-element solution of the problem are presented for these materials.
Citation:
B. D. Annin, A. I. Oleinikov, K. S. Bormotin, “Modeling of forming of wing panels of the SSJ-100 aircraft”, Prikl. Mekh. Tekh. Fiz., 51:4 (2010), 155–165; J. Appl. Mech. Tech. Phys., 51:4 (2010), 579–589
\Bibitem{AnnOleBor10}
\by B.~D.~Annin, A.~I.~Oleinikov, K.~S.~Bormotin
\paper Modeling of forming of wing panels of the SSJ-100 aircraft
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2010
\vol 51
\issue 4
\pages 155--165
\mathnet{http://mi.mathnet.ru/pmtf1629}
\elib{https://elibrary.ru/item.asp?id=15227915}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2010
\vol 51
\issue 4
\pages 579--589
\crossref{https://doi.org/10.1007/s10808-010-0074-2}
Linking options:
https://www.mathnet.ru/eng/pmtf1629
https://www.mathnet.ru/eng/pmtf/v51/i4/p155
This publication is cited in the following 17 articles:
K. S. Bormotin, “Convergence of a Numerical Method for Solving the Optimal Control Problem of Panel Forming under Creep Conditions”, Comput. Math. and Math. Phys., 64:1 (2024), 45
S. V. Boiko, A. U. Larichkin, “Inverse problem of ribbed panel shape formation”, J. Appl. Mech. Tech. Phys., 64:3 (2023), 546–554
G. M. Sevastyanov, K. S. Bormotin, “Stress relaxation in a bended viscoelastic plate with tension-compression asymmetry”, J. Appl. Mech. Tech. Phys., 64:4 (2023), 686–692
S. V. Boyko, A. Yu. Larichkin, “Inverse problem of pure beam bending in creep conditions”, J. Appl. Industr. Math., 17:2 (2023), 260–271
Yuhao Guo, Gang Liu, Yi Huang, “A complemented multiaxial creep constitutive model for materials with different properties in tension and compression”, European Journal of Mechanics - A/Solids, 93 (2022), 104510
K. S. Bormotin, A. A. Krivenok, “Numerical Optimization of the Kinematic Scheme of Multi-Point Forming of Panel in the Creep Mode”, Mech. Solids, 57:5 (2022), 1086
Konstantin S. Bormotin, Lecture Notes in Networks and Systems, 200, Current Problems and Ways of Industry Development: Equipment and Technologies, 2021, 10
A. M. Lokoshchenko, W. V. Teraud, A. F. Akhmetgaleev, “Steady-State Creep of a Narrow Membrane Inside a Rigid Low Matrix”, Mech. Solids, 56:8 (2021), 1668
K.S. Bormotin, 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), 2020, 1
K. N. Galimzyanova, L. V. Kovtanyuk, G. L. Panchenko, “Creep and plastic flow of a spherical viscoelastic layer material at its loading and unloading”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 223:2 (2019), 270–283
K.S. Bormotin, Win Aung, 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), 2018, 1
K S Bormotin, Win Aung, “The computation method of rational multi-point forming of panel in the creep mode”, J. Phys.: Conf. Ser., 1129 (2018), 012007
Konstantin Bormotin, Sergey Belykh, Vin Aung, S. Bratan, S. Gorbatyuk, S. Leonov, S. Roshchupkin, “Simulation and estimation of parameters in reconfigurable multipoint forming processes of plates in the creep mode”, MATEC Web Conf., 129 (2017), 05004
K. S. Bormotin, S. V. Belykh, 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2017, 1
A I Oleinikov, A A Oleinikov, “Models of Anisotropic Creep in Integral Wing Panel Forming Processes”, J. Phys.: Conf. Ser., 734 (2016), 032095
Alexander Ivanovich Oleinikov, “Integrated Design of Wing Panel Manufacture Processes”, KEM, 554-557 (2013), 2175
K. S. Bormotin, “Iterative method for solving geometrically nonlinear inverse problems of structural element shaping under creep conditions”, Comput. Math. Math. Phys., 53:12 (2013), 1908–1915