Loading [MathJax]/jax/output/SVG/config.js
Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2010, Volume 51, Issue 4, Pages 116–126 (Mi pmtf1626)  

This article is cited in 17 scientific papers (total in 17 papers)

Mathematical model of an incompressible viscoelastic Maxwell medium

V. V. Pukhnachevab

a Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk, 630090, Russia
b Novosibirsk State University, Novosibirsk, 630090, Russia
Abstract: Nonstationary motions of incompressible viscoelastic Maxwell continuum with a constant relaxation time are considered. Because in an incompressible continuous medium, pressure is not a thermodynamic variable but coincides with the stress-tensor trace to within a factor, it follows that, separating the spherical part from this tensor, one can assume that the remaining part of the stress tensor has zero trace. In the case of an incompressible medium, the equations for the velocity, pressure, and stress tensor form a closed system of first-order equations which has both real and complex characteristics, which complicates the formulation of the initial-boundary-value problem. Nevertheless, the resolvability of the Cauchy problem can be proved in the class of analytic functions. Unique resolvability of the linearized problem was established in the classes of functions of finite smoothness. The class of effectively one-dimensional motions for which the subsystem of three equations is a hyperbolic one was studied. The results of an asymptotic analysis of the latter imply the possible formation of discontinuities during the evolution of the solution. The general system of equations of motion admits an infinite-dimensional Lie pseudo-group which contains an extended Galilean group. The theorem of the invariance of the conditions on the a priori unknown free boundary was proved to obtain exact solutions of free-boundary problems. The problem of deformation of a viscoelastic strip subjected to tangential stresses applied to the free boundary is considered as an example of application of this theorem. In this problem, a scale effect of short-wave instability caused by the absence of diagonal dominance of the stress tensor deviator was found.
Keywords: viscoelastic medium, incompressibility, Maxwell relation, Galilean group, free-boundary problems.
Received: 14.01.2010
English version:
Journal of Applied Mechanics and Technical Physics, 2010, Volume 51, Issue 4, Pages 546–554
DOI: https://doi.org/10.1007/s10808-010-0071-5
Bibliographic databases:
Document Type: Article
UDC: 532.135 + 532.137
Language: Russian
Citation: V. V. Pukhnachev, “Mathematical model of an incompressible viscoelastic Maxwell medium”, Prikl. Mekh. Tekh. Fiz., 51:4 (2010), 116–126; J. Appl. Mech. Tech. Phys., 51:4 (2010), 546–554
Citation in format AMSBIB
\Bibitem{Puk10}
\by V.~V.~Pukhnachev
\paper Mathematical model of an incompressible viscoelastic Maxwell medium
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2010
\vol 51
\issue 4
\pages 116--126
\mathnet{http://mi.mathnet.ru/pmtf1626}
\elib{https://elibrary.ru/item.asp?id=15227912}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2010
\vol 51
\issue 4
\pages 546--554
\crossref{https://doi.org/10.1007/s10808-010-0071-5}
Linking options:
  • https://www.mathnet.ru/eng/pmtf1626
  • https://www.mathnet.ru/eng/pmtf/v51/i4/p116
  • This publication is cited in the following 17 articles:
    1. C. Chittam, S.V. Meleshko, “General solution of the Maxwell equations for the stagnation point problem with cylindrical symmetry for all values of the parameter in the Johnson-Segalman derivative”, Communications in Nonlinear Science and Numerical Simulation, 142 (2025), 108527  crossref
    2. Lyailya Zhapsarbayeva, Dongming Wei, Bagyzhan Bagymkyzy, “Existence and Uniqueness of the Viscous Burgers' Equation with the p-Laplace Operator”, Mathematics, 13:5 (2025), 708  crossref
    3. Evgenii S. Baranovskii, Mikhail A. Artemov, Sergey V. Ershkov, Alexander V. Yudin, “The Kelvin–Voigt–Brinkman–Forchheimer Equations with Non-Homogeneous Boundary Conditions”, Mathematics, 13:6 (2025), 967  crossref
    4. Harold Berjamin, Michel Destrade, Giuseppe Saccomandi, “Singular travelling waves in soft viscoelastic solids of rate type”, European Journal of Mechanics - A/Solids, 103 (2024), 105144  crossref
    5. D. V. Georgievskii, “Tensor Nonlinear Viscoelastic Models of the Maxwell Type: Vibration Creep and Ratcheting”, Mech. Solids, 59:3 (2024), 1195  crossref
    6. E. Collignon, Q. D. Zhang, X. Frank, Huai Z. Li, “Initial coalescence between a drop and a liquid pool: A lattice Boltzmann investigation validated by experiments”, Physics of Fluids, 36:12 (2024)  crossref
    7. A. G. Knyazeva, “Thermoviscoelastic model of the treatment of a surface layer with variable viscosity”, J. Appl. Mech. Tech. Phys., 65:3 (2024), 476–487  mathnet  crossref  crossref  elib
    8. D. V. Georgievskii, “Tensor nonlinear viscoelastic models by maxwell-type: vibrocreep and ratcheting”, Izvestiâ Rossijskoj akademii nauk. Mehanika tverdogo tela, 2024, no. 3  crossref
    9. Ch. Chittam, S. V. Meleshko, “Analiticheskoe reshenie uravnenii vyazkouprugoi modeli Maksvella s kriticheskoi tochkoi v tsilindricheskoi geometrii”, Prikl. mekh. tekhn. fiz., 65:5 (2024), 208–212  mathnet  crossref
    10. E. Yu. Prosviryakov, “New Class of Exact Solutions of Navier–Stokes Equations with Exponential Dependence of Velocity on Two Spatial Coordinates”, Theor Found Chem Eng, 53:1 (2019), 107  crossref
    11. N.P. Moshkin, V.V. Pukhnachev, Yu.D. Bozhkov, “On the unsteady, stagnation point flow of a Maxwell fluid in 2D”, International Journal of Non-Linear Mechanics, 116 (2019), 32  crossref
    12. N P Moshkin, “On Hiemenz flow of Maxwell incompressible viscoelastic medium”, J. Phys.: Conf. Ser., 1268:1 (2019), 012049  crossref
    13. S.V. Meleshko, N.P. Moshkin, V.V. Pukhnachev, V. Samatova, “On steady two-dimensional analytical solutions of the viscoelastic Maxwell equations”, Journal of Non-Newtonian Fluid Mechanics, 270 (2019), 1  crossref
    14. E. Yu. Prosviryakov, L. F. Spevak, “Layered Three-Dimensional Nonuniform Viscous Incompressible Flows”, Theor Found Chem Eng, 52:5 (2018), 765  crossref
    15. S.V. Meleshko, N.P. Moshkin, V.V. Pukhnachev, “On exact analytical solutions of equations of Maxwell incompressible viscoelastic medium”, International Journal of Non-Linear Mechanics, 105 (2018), 152  crossref
    16. Vladislav V. Pukhnachev, Elena Yu. Fominykh, “Symmetries in equations of incompressible viscoelastic Maxwell medium*”, Lith Math J, 58:3 (2018), 309  crossref
    17. V.Yu. Liapidevskii, V.V. Pukhnachev, A.Tani, “Nonlinear waves in incompressible viscoelastic Maxwell medium”, Wave Motion, 48:8 (2011), 727  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:90
    Full-text PDF :28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025