Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2010, Volume 51, Issue 3, Pages 126–136 (Mi pmtf1610)  

This article is cited in 19 scientific papers (total in 19 papers)

Resonant properties of moment Cosserat continuum

M. P. Varyginaa, O. V. Sadovskayaab, V. M. Sadovskiiab

a Institute of Computational Modeling, Siberian Division, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
b Siberian Federal University, Krasnoyarsk, 660041, Russia
Abstract: Using highly effective parallel calculations, it is shown that in a moment elastic medium, there is a resonant frequency which corresponds to the eigenfrequency of rotational motion of particles and does not depend on the size of the region studied.
Keywords: elasticity, moment medium, parallel algorithm, resonant spectrum.
Received: 09.04.2009
English version:
Journal of Applied Mechanics and Technical Physics, 2010, Volume 51, Issue 3, Pages 405–413
DOI: https://doi.org/10.1007/s10808-010-0055-5
Bibliographic databases:
Document Type: Article
UDC: 539.37
Language: Russian
Citation: M. P. Varygina, O. V. Sadovskaya, V. M. Sadovskii, “Resonant properties of moment Cosserat continuum”, Prikl. Mekh. Tekh. Fiz., 51:3 (2010), 126–136; J. Appl. Mech. Tech. Phys., 51:3 (2010), 405–413
Citation in format AMSBIB
\Bibitem{VarSadSad10}
\by M.~P.~Varygina, O.~V.~Sadovskaya, V.~M.~Sadovskii
\paper Resonant properties of moment Cosserat continuum
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2010
\vol 51
\issue 3
\pages 126--136
\mathnet{http://mi.mathnet.ru/pmtf1610}
\elib{https://elibrary.ru/item.asp?id=15285710}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2010
\vol 51
\issue 3
\pages 405--413
\crossref{https://doi.org/10.1007/s10808-010-0055-5}
Linking options:
  • https://www.mathnet.ru/eng/pmtf1610
  • https://www.mathnet.ru/eng/pmtf/v51/i3/p126
  • This publication is cited in the following 19 articles:
    1. Richa Kumari, Abhishek K. Singh, Mriganka S. Chaki, “Influence of Abrupt Thickening on the Shear Wave Propagation on Reduced Cosserat Media with Imperfect Interface”, Int. J. Geomech., 22:4 (2022)  crossref
    2. Maria Varygina, “Numerical modeling of elastic waves in micropolar plates and shells taking into account inertial characteristics”, Continuum Mech. Thermodyn., 32:3 (2020), 761  crossref
    3. A. E. Anisimov, E. V. Zdanchuk, V. V. Lalin, “Surface of Discontinuity in Anisotropic Reduced Cosserat Continuum: Uniqueness Theorem for Dynamic Problems with Discontinuities”, Mech. Solids, 55:7 (2020), 1051  crossref
    4. K. S. Surana, A. D. Joy, J. N. Reddy, “Ordered rate constitutive theories for non-classical thermoviscoelastic solids with memory incorporating internal and Cosserat rotations”, Continuum Mech. Thermodyn., 31:2 (2019), 427  crossref
    5. K. S. Surana, R. Shanbhag, J. N. Reddy, “Necessity of law of balance of moment of moments in non-classical continuum theories for solid continua”, Meccanica, 53:11-12 (2018), 2939  crossref
    6. K. S. Surana, D. Mysore, J. N. Reddy, “Ordered Rate Constitutive Theories for Non-classical Thermoviscoelastic Solids with Dissipation and Memory Incorporating Internal Rotations”, Polytechnica, 1:1-2 (2018), 19  crossref
    7. K. S. Surana, A. D. Joy, J. N. Reddy, “Ordered rate constitutive theories for thermoviscoelastic solids without memory incorporating internal and Cosserat rotations”, Acta Mech, 229:8 (2018), 3189  crossref
    8. K. S. Surana, A. D. Joy, J. N. Reddy, “Ordered Rate Constitutive Theories for Non-Classical Thermoviscoelastic Fluids Incorporating Internal and Cosserat Rotation Rates”, Int. J. Appl. Mechanics, 10:02 (2018), 1850012  crossref
    9. K. S. Surana, A. D. Joy, J. N. Reddy, “Non-classical continuum theory for solids incorporating internal rotations and rotations of Cosserat theories”, Continuum Mech. Thermodyn., 29:2 (2017), 665  crossref
    10. Yury A. Rossikhin, Marina V. Shitikova, “A new approach for studying the transient response of thin-walled beams of open profile with Cosserat-type micro-structure”, Composite Structures, 169 (2017), 153  crossref
    11. Maria Varygina, Lecture Notes in Computer Science, 10187, Numerical Analysis and Its Applications, 2017, 690  crossref
    12. M. Varygina, AIP Conference Proceedings, 1895, 2017, 080005  crossref
    13. S V Klishin, A F Revuzhenko, A A Kazantsev, “Rolling Friction in Loose Media and its Role in Mechanics Problems”, IOP Conf. Ser.: Mater. Sci. Eng., 142 (2016), 012132  crossref
    14. M. Varygina, AIP Conference Proceedings, 1773, 2016, 080007  crossref
    15. V.M. Sadovskii, O.V. Sadovskaya, “Modeling of elastic waves in a blocky medium based on equations of the Cosserat continuum”, Wave Motion, 52 (2015), 138  crossref
    16. Yury A. Rossikhin, Marina V. Shitikova, “Transient wave velocities in pre-stressed thin-walled beams of open profile with Cosserat-type micro-structure”, Composites Part B: Engineering, 83 (2015), 323  crossref
    17. A.H. Sargsyan, S.H. Sargsyan, “Dynamic model of micropolar elastic thin plates with independent fields of displacements and rotations”, Journal of Sound and Vibration, 333:18 (2014), 4354  crossref
    18. S. H. Sargsyan, A. H. Sargsyan, “Model of micropolar thin shell oscillations”, Acoust. Phys., 59:2 (2013), 148  crossref
    19. Oxana Sadovskaya, Vladimir Sadovskii, Advanced Structured Materials, 21, Mathematical Modeling in Mechanics of Granular Materials, 2012, 333  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:72
    Full-text PDF :28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025