Abstract:
Using highly effective parallel calculations, it is shown that in a moment elastic medium, there is a resonant frequency which corresponds to the eigenfrequency of rotational motion of particles and does not depend on the size of the region studied.
Keywords:
elasticity, moment medium, parallel algorithm, resonant spectrum.
Citation:
M. P. Varygina, O. V. Sadovskaya, V. M. Sadovskii, “Resonant properties of moment Cosserat continuum”, Prikl. Mekh. Tekh. Fiz., 51:3 (2010), 126–136; J. Appl. Mech. Tech. Phys., 51:3 (2010), 405–413
This publication is cited in the following 19 articles:
Richa Kumari, Abhishek K. Singh, Mriganka S. Chaki, “Influence of Abrupt Thickening on the Shear Wave Propagation on Reduced Cosserat Media with Imperfect Interface”, Int. J. Geomech., 22:4 (2022)
Maria Varygina, “Numerical modeling of elastic waves in micropolar plates and shells taking into account inertial characteristics”, Continuum Mech. Thermodyn., 32:3 (2020), 761
A. E. Anisimov, E. V. Zdanchuk, V. V. Lalin, “Surface of Discontinuity in Anisotropic Reduced Cosserat Continuum: Uniqueness Theorem for Dynamic Problems with Discontinuities”, Mech. Solids, 55:7 (2020), 1051
K. S. Surana, A. D. Joy, J. N. Reddy, “Ordered rate constitutive theories for non-classical thermoviscoelastic solids with memory incorporating internal and Cosserat rotations”, Continuum Mech. Thermodyn., 31:2 (2019), 427
K. S. Surana, R. Shanbhag, J. N. Reddy, “Necessity of law of balance of moment of moments in non-classical continuum theories for solid continua”, Meccanica, 53:11-12 (2018), 2939
K. S. Surana, D. Mysore, J. N. Reddy, “Ordered Rate Constitutive Theories for Non-classical Thermoviscoelastic Solids with Dissipation and Memory Incorporating Internal Rotations”, Polytechnica, 1:1-2 (2018), 19
K. S. Surana, A. D. Joy, J. N. Reddy, “Ordered rate constitutive theories for thermoviscoelastic solids without memory incorporating internal and Cosserat rotations”, Acta Mech, 229:8 (2018), 3189
K. S. Surana, A. D. Joy, J. N. Reddy, “Ordered Rate Constitutive Theories for Non-Classical Thermoviscoelastic Fluids Incorporating Internal and Cosserat Rotation Rates”, Int. J. Appl. Mechanics, 10:02 (2018), 1850012
K. S. Surana, A. D. Joy, J. N. Reddy, “Non-classical continuum theory for solids incorporating internal rotations and rotations of Cosserat theories”, Continuum Mech. Thermodyn., 29:2 (2017), 665
Yury A. Rossikhin, Marina V. Shitikova, “A new approach for studying the transient response of thin-walled beams of open profile with Cosserat-type micro-structure”, Composite Structures, 169 (2017), 153
Maria Varygina, Lecture Notes in Computer Science, 10187, Numerical Analysis and Its Applications, 2017, 690
M. Varygina, AIP Conference Proceedings, 1895, 2017, 080005
S V Klishin, A F Revuzhenko, A A Kazantsev, “Rolling Friction in Loose Media and its Role in Mechanics Problems”, IOP Conf. Ser.: Mater. Sci. Eng., 142 (2016), 012132
M. Varygina, AIP Conference Proceedings, 1773, 2016, 080007
V.M. Sadovskii, O.V. Sadovskaya, “Modeling of elastic waves in a blocky medium based on equations of the Cosserat continuum”, Wave Motion, 52 (2015), 138
Yury A. Rossikhin, Marina V. Shitikova, “Transient wave velocities in pre-stressed thin-walled beams of open profile with Cosserat-type micro-structure”, Composites Part B: Engineering, 83 (2015), 323
A.H. Sargsyan, S.H. Sargsyan, “Dynamic model of micropolar elastic thin plates with independent fields of displacements and rotations”, Journal of Sound and Vibration, 333:18 (2014), 4354
S. H. Sargsyan, A. H. Sargsyan, “Model of micropolar thin shell oscillations”, Acoust. Phys., 59:2 (2013), 148
Oxana Sadovskaya, Vladimir Sadovskii, Advanced Structured Materials, 21, Mathematical Modeling in Mechanics of Granular Materials, 2012, 333