Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2011, Volume 52, Issue 6, Pages 152–164 (Mi pmtf1552)  

This article is cited in 13 scientific papers (total in 13 papers)

Quasi-brittle fracture diagram of structured bodies in the presence of edge cracks

V. M. Kornev, A. G. Demeshkin

Lavrent’ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
Abstract: The Neuber–Novozhilov approach is used to obtain necessary and sufficient fracture criteria. Using a modified Leonov–Panasyuk–Dugdale model, simple relations for the critical fracture parameters are derived for opening mode edge cracks for the case where the diameter of the prefracture zone coincides with the diameter of the plasticity zone. These relations are suitable for studying fracture where the crack length is negligibly small. A fracture diagram using critical stresses under both criteria is proposed for a wide range of crack length. At a certain level of loading, three regions are identified, in the first of which the crack is stable, in the second, the crack extends but remains stable, and in the third, the crack is unstable. Experimental data on the fracture of specimens with edge cracks are obtained. It is established that the theoretical critical fracture curves are in good agreement with the obtained critical parameters for flat tensile specimens with two collinear edge cracks.
Keywords: quasi-brittle and brittle fracture, necessary and sufficient criteria, structured materials, edge crack.
Received: 14.05.2010
Accepted: 22.12.2010
English version:
Journal of Applied Mechanics and Technical Physics, 2011, Volume 52, Issue 6, Pages 975–985
DOI: https://doi.org/10.1134/S0021894411060162
Bibliographic databases:
Document Type: Article
UDC: 539.3
Language: Russian
Citation: V. M. Kornev, A. G. Demeshkin, “Quasi-brittle fracture diagram of structured bodies in the presence of edge cracks”, Prikl. Mekh. Tekh. Fiz., 52:6 (2011), 152–164; J. Appl. Mech. Tech. Phys., 52:6 (2011), 975–985
Citation in format AMSBIB
\Bibitem{KorDem11}
\by V.~M.~Kornev, A.~G.~Demeshkin
\paper Quasi-brittle fracture diagram of structured bodies in the presence of edge cracks
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2011
\vol 52
\issue 6
\pages 152--164
\mathnet{http://mi.mathnet.ru/pmtf1552}
\elib{https://elibrary.ru/item.asp?id=17113101}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2011
\vol 52
\issue 6
\pages 975--985
\crossref{https://doi.org/10.1134/S0021894411060162}
Linking options:
  • https://www.mathnet.ru/eng/pmtf1552
  • https://www.mathnet.ru/eng/pmtf/v52/i6/p152
  • This publication is cited in the following 13 articles:
    1. V. D. Kurguzov, “Simulation of delamination of steel pipes under complex loading”, J. Appl. Mech. Tech. Phys., 64:6 (2024), 1078–1089  mathnet  crossref  crossref  elib
    2. V.D. Kurguzov, N.S. Astapov, “Analytical Model of Quasi-Brittle Fracture of a Plate with Crack”, HoBMSTU.SME, 2023, no. 1 (144), 80  crossref
    3. V. S. Klyuchantsev, V. D. Kurguzov, A. V. Shutov, “Refined Engineering Theory of Fracture with a Two-Parameter Strength Criterion”, Phys Mesomech, 26:5 (2023), 542  crossref
    4. V. D. Kurguzov, “Quasibritle fracture of smooth shafts in torsion”, J. Appl. Mech. Tech. Phys., 63:3 (2022), 542–551  mathnet  crossref  crossref  elib
    5. V.D. Kurguzov, N.V. Fedorova, “Criterion for elastoplastic failure of bimetallic plate with edge crack of transverse shear at the boundary of the materials joint”, Comp. Contin. Mech., 14:3 (2021), 333  crossref
    6. V. D. Kurguzov, V. M. Kornev, “Simulation of fracture of elastoplastic materials in mode III: from brittle to ductile”, Meccanica, 55:1 (2020), 161  crossref
    7. V D Kurguzov, “Quasi-brittle fracture of smooth shafts under torsion (stress-strain-based approach)”, J. Phys.: Conf. Ser., 1666:1 (2020), 012027  crossref
    8. Natalia Fedorova, Vladimir Kurguzov, HIGH-ENERGY PROCESSES IN CONDENSED MATTER (HEPCM 2020): Proceedings of the XXVII Conference on High-Energy Processes in Condensed Matter, dedicated to the 90th anniversary of the birth of RI Soloukhin, 2288, HIGH-ENERGY PROCESSES IN CONDENSED MATTER (HEPCM 2020): Proceedings of the XXVII Conference on High-Energy Processes in Condensed Matter, dedicated to the 90th anniversary of the birth of RI Soloukhin, 2020, 030053  crossref
    9. Vladimir Kurguzov, Vladimir Kornev, 28TH RUSSIAN CONFERENCE ON MATHEMATICAL MODELLING IN NATURAL SCIENCES, 2216, 28TH RUSSIAN CONFERENCE ON MATHEMATICAL MODELLING IN NATURAL SCIENCES, 2020, 020003  crossref
    10. V D Kurguzov, “Simulation of fracture of elasto-platic solids with cracks under conditions of out-of plane deformation”, IOP Conf. Ser.: Earth Environ. Sci., 193 (2018), 012038  crossref
    11. V M Kornev, “On catastrophic fracture of steel structures at temperatures lower than cold brittleness threshold”, J. Phys.: Conf. Ser., 894 (2017), 012045  crossref
    12. V.M. Kornev, “Damage Accumulation and Fracture of Weld Joints under Low-Cyclic Loading Conditions”, AMM, 784 (2015), 179  crossref
    13. V.M. Kornev, “Quasi-brittle fracture diagrams under low-cycle fatigue (variable amplitude loadings)”, Engineering Failure Analysis, 35 (2013), 533  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:57
    Full-text PDF :26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025