Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2022, Volume 63, Issue 5, Pages 110–118
DOI: https://doi.org/10.15372/PMTF20220511
(Mi pmtf154)
 

Local equilibrium approximation in the mathematical model of the far turbulent wake behind a body of revolution

V. N. Grebeneva, A. G. Demenkobc, G. G. Chernykha

a Federal Research Center for Information and Computational Technologies, 630090, Novosibirsk, Russia
b Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
c Novosibirsk State Technical University, 630073, Novosibirsk, Russia
References:
Abstract: The flow in the far turbulent wake behind a body of revolution is studied with the use of a three-parameter turbulence model, which includes differential equations of the turbulent energy balance, transport equation for the turbulent energy dissipation rate, and turbulent shear stress equation. Local equilibrium algebraic truncation of the transport equation for the turbulent shear stress yields the known Kolmogorov–Prandtl equation. Under a certain constraint on the values of the empirical constants and for the law of time scale growth consistent with the mathematical model, this equation is a differential constraint of the model or an invariant manifold in the phase space of the corresponding dynamic system. The equivalence of the local equilibrium approximation and the condition of the zero value of the Poisson bracket for the normalized turbulent diffusion coefficient and defect of the longitudinal component of velocity is demonstrated. Results of numerical experiments are reported; they are found to be in good agreement with theoretical predictions.
Keywords: method of differential constraints, three-parameter model of the turbulent wake, local equilibrium approximation, turbulent wake behind the body of revolution, numerical simulation.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 121031100246-5
Received: 09.02.2022
Revised: 09.02.2022
Accepted: 25.04.2022
English version:
Journal of Applied Mechanics and Technical Physics, 2022, Volume 63, Issue 5, Pages 825–832
DOI: https://doi.org/10.1134/S002189442205011X
Bibliographic databases:
Document Type: Article
UDC: 532.517.4
Language: Russian
Citation: V. N. Grebenev, A. G. Demenko, G. G. Chernykh, “Local equilibrium approximation in the mathematical model of the far turbulent wake behind a body of revolution”, Prikl. Mekh. Tekh. Fiz., 63:5 (2022), 110–118; J. Appl. Mech. Tech. Phys., 63:5 (2022), 825–832
Citation in format AMSBIB
\Bibitem{GreDemChe22}
\by V.~N.~Grebenev, A.~G.~Demenko, G.~G.~Chernykh
\paper Local equilibrium approximation in the mathematical model of the far turbulent wake behind a body of revolution
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2022
\vol 63
\issue 5
\pages 110--118
\mathnet{http://mi.mathnet.ru/pmtf154}
\crossref{https://doi.org/10.15372/PMTF20220511}
\elib{https://elibrary.ru/item.asp?id=49537720}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2022
\vol 63
\issue 5
\pages 825--832
\crossref{https://doi.org/10.1134/S002189442205011X}
Linking options:
  • https://www.mathnet.ru/eng/pmtf154
  • https://www.mathnet.ru/eng/pmtf/v63/i5/p110
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:54
    References:16
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024