Loading [MathJax]/jax/output/SVG/config.js
Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2011, Volume 52, Issue 5, Pages 39–48 (Mi pmtf1520)  

This article is cited in 18 scientific papers (total in 18 papers)

Structure of kinematic and force fields in the Riemannian continuum model

M. A. Guzev

Institute of Applied Mathematics, Far East Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
Abstract: In this paper, we consider a non-Euclidean continuum model for which the structure of defects in the material is characterized by an internal metric and scalar curvature. It is shown that the irrotational displacement field for points of this medium is composed of elastic displacements (in the absence of defects) and the field which characterizes the deviation of the internal geometry of the model from Euclidean geometry. The corresponding components of the internal stresses are the sum of elastic stresses and the self-equilibrated stresses determined by the scalar curvature. The exact solution for the vortex field of dislocations is constructed, and conditions of the existence of a nonzero stress field parametrized by a scalar curvature in the absence of external forces are formulated.
Keywords: internal strains, defects, incompatibility, Riemann tensor.
Received: 06.07.2010
English version:
Journal of Applied Mechanics and Technical Physics, 2011, Volume 52, Issue 5, Pages 709–716
DOI: https://doi.org/10.1134/S002189441105004X
Bibliographic databases:
Document Type: Article
UDC: 539.37+514
Language: Russian
Citation: M. A. Guzev, “Structure of kinematic and force fields in the Riemannian continuum model”, Prikl. Mekh. Tekh. Fiz., 52:5 (2011), 39–48; J. Appl. Mech. Tech. Phys., 52:5 (2011), 709–716
Citation in format AMSBIB
\Bibitem{Guz11}
\by M.~A.~Guzev
\paper Structure of kinematic and force fields in the Riemannian continuum model
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2011
\vol 52
\issue 5
\pages 39--48
\mathnet{http://mi.mathnet.ru/pmtf1520}
\elib{https://elibrary.ru/item.asp?id=17255698}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2011
\vol 52
\issue 5
\pages 709--716
\crossref{https://doi.org/10.1134/S002189441105004X}
Linking options:
  • https://www.mathnet.ru/eng/pmtf1520
  • https://www.mathnet.ru/eng/pmtf/v52/i5/p39
  • This publication is cited in the following 18 articles:
    1. Oxana V. Sadovskaya, Vladimir M. Sadovskii, “Mathematical modelling of fracture waves in a blocky medium with thin compliant interlayers”, Phil. Trans. R. Soc. A., 382:2277 (2024)  crossref
    2. Cong Zhang, Zhende Zhu, Shanyong Wang, Chong Shi, Wangyang Li, “Seismic response and deformation mechanism of near-fault deep tunnels in a strong earthquake area”, Acta Geotech., 18:9 (2023), 4847  crossref
    3. Mikhail Guzev, Advanced Structured Materials, 155, Advanced Materials Modelling for Mechanical, Medical and Biological Applications, 2022, 213  crossref
    4. Cong Zhang, Zhende Zhu, Shanyong Wang, Xuhua Ren, Chong Shi, “Stress wave propagation and incompatible deformation mechanisms in rock discontinuity interfaces in deep‐buried tunnels”, Deep Underground Science and Engineering, 1:1 (2022), 25  crossref
    5. Yingji Bao, Binsong Jiang, Tongguang Ni, “Theory and Numerical Simulation of Deep Rock Mass Based on a Non-Euclidean Model”, Scientific Programming, 2022 (2022), 1  crossref
    6. M. A. Guzev, W. Liu, Ch. Qi, E. P. Riabokon, “Compensating role self-balanced stress fields in constructing nonsingular solutions using a non-Euclidean model of a continuous medium for an incompressible sphere”, J. Appl. Mech. Tech. Phys., 62:5 (2021), 736–741  mathnet  crossref  crossref  elib
    7. Mikhail A. Guzev, Modeling in Geotechnical Engineering, 2021, 61  crossref
    8. Mikhail A. Guzev, Smart Innovation, Systems and Technologies, 214, Smart Modelling For Engineering Systems, 2021, 75  crossref
    9. Wei Liu, Mikhail Guzev, Chengzhi Qi, “Non-Euclidean model for description of residual stresses in planar deformations”, Applied Mathematical Modelling, 90 (2021), 615  crossref
    10. Yingji Bao, Binsong Jiang, “Incompatible Deformation Model of Rocks with Defects around a Thick-Walled Cylinder”, Processes, 9:12 (2021), 2215  crossref
    11. Y.D. Shou, X.P. Zhou, Q.H. Qian, “A critical condition of the zonal disintegration in deep rock masses: Strain energy density approach”, Theoretical and Applied Fracture Mechanics, 97 (2018), 322  crossref
    12. Y. D. Shou, X. P. Zhou, Q. H. Qian, “Dynamic Model of the Zonal Disintegration of Rock Surrounding a Deep Spherical Cavity”, Int. J. Geomech., 17:6 (2017)  crossref
    13. Jing Bi, Xiao Ping Zhou, “Numerical Simulation of Zonal Disintegration of the Surrounding Rock Masses Around a Deep Circular Tunnel Under Dynamic Unloading”, Int. J. Comput. Methods, 12:03 (2015), 1550020  crossref
    14. Xiaoping Zhou, Qihu Qian, Hanfei Song, “The effects of three-dimensional penny-shaped cracks on zonal disintegration of the surrounding rock masses around a deep circular tunnel”, Acta Mechanica Solida Sinica, 28:6 (2015), 722  crossref
    15. Mikhail A. Guzev, “Non-Classical Solutions of Critical Rock Behavior”, AMR, 891-892 (2014), 1663  crossref
    16. Mikhail Guzev, Chengzhi Qi, Jiping Bai, Kairui Li, “Equilibrium equations and boundary conditions of strain gradient theory in arbitrary curvilinear coordinates”, Journal of the Mechanical Behavior of Materials, 23:5-6 (2014), 169  crossref
    17. Mikhail A. Guzev, “Non-classical solutions of a continuum model for rock descriptions”, Journal of Rock Mechanics and Geotechnical Engineering, 6:3 (2014), 180  crossref
    18. Xiao-Ping Zhou, Yun-Dong Shou, “Excavation-induced zonal disintegration of the surrounding rock around a deep circular tunnel considering unloading effect”, International Journal of Rock Mechanics and Mining Sciences, 64 (2013), 246  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:83
    Full-text PDF :34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025