Loading [MathJax]/jax/output/SVG/config.js
Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2011, Volume 52, Issue 2, Pages 15–26 (Mi pmtf1456)  

This article is cited in 12 scientific papers (total in 12 papers)

Calculation of shock-wave parameters far from origination by combined numerical-analytical methods

A. V. Potapkin, D. Yu. Moskvichev

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosibirsk, 630090, Russia
Abstract: An algorithm is proposed for calculating the parameters of weak shock waves at large distances from their origination. In chosen meridional planes, the parameters of the near field of the three-dimensional flow are used to determine the streamwise coordinates of “phantom bodies” by linear relations. When the initial body is replaced by a system of “phantom bodies” for which discrete values of the Whitham function are found, the far-field parameters are calculated by the Whitham theory, independently in each meridional plane. Results calculated for a body with axial symmetry and for bodies with spatial symmetry are presented.
Keywords: supersonic flow, spatial flows, shock waves, sonic boom, combined method, linear theory, Whitham theory.
Received: 15.03.2010
English version:
Journal of Applied Mechanics and Technical Physics, 2011, Volume 52, Issue 2, Pages 169–177
DOI: https://doi.org/10.1134/S0021894411020027
Bibliographic databases:
Document Type: Article
UDC: 533.601.1
Language: Russian
Citation: A. V. Potapkin, D. Yu. Moskvichev, “Calculation of shock-wave parameters far from origination by combined numerical-analytical methods”, Prikl. Mekh. Tekh. Fiz., 52:2 (2011), 15–26; J. Appl. Mech. Tech. Phys., 52:2 (2011), 169–177
Citation in format AMSBIB
\Bibitem{PotMos11}
\by A.~V.~Potapkin, D.~Yu.~Moskvichev
\paper Calculation of shock-wave parameters far from origination by combined numerical-analytical methods
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2011
\vol 52
\issue 2
\pages 15--26
\mathnet{http://mi.mathnet.ru/pmtf1456}
\elib{https://elibrary.ru/item.asp?id=16227875}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2011
\vol 52
\issue 2
\pages 169--177
\crossref{https://doi.org/10.1134/S0021894411020027}
Linking options:
  • https://www.mathnet.ru/eng/pmtf1456
  • https://www.mathnet.ru/eng/pmtf/v52/i2/p15
  • This publication is cited in the following 12 articles:
    1. A. V. Potapkin, D. Yu. Moskvichev, “Effect of Local Heat Supply into Supersonic Incoming Flow Ahead of Thin Body with Disk on Intensity of Weak Far-Field Shock Waves”, J. Engin. Thermophys., 33:3 (2024), 566  crossref
    2. A. V. Potapkin, D. Yu. Moskvichev, “The influence of local heating of incident flow on level of sonic boom from thin body in wind shadow behind a disk”, Tech. Phys. Lett., 47:11 (2021), 810–813  mathnet  mathnet  crossref  crossref
    3. A. V. Potapkin, D. Yu. Moskvichev, “A sonic boom from a thin body and local heating regions of an incoming supersonic flow”, Tech. Phys., 66:5 (2021), 648–657  mathnet  mathnet  crossref  crossref  scopus
    4. A. V. Potapkin, D. Yu. Moskvichev, “The dependence of a sonic boom on the relative positions of bodies in a supersonic flow”, Tech. Phys. Lett., 46:3 (2020), 295–298  mathnet  mathnet  crossref  crossref
    5. A. V. Potapkin, D. Yu. Moskvichev, HIGH-ENERGY PROCESSES IN CONDENSED MATTER (HEPCM 2019): Proceedings of the XXVI Conference on High-Energy Processes in Condensed Matter, dedicated to the 150th anniversary of the birth of S.A. Chaplygin, 2125, HIGH-ENERGY PROCESSES IN CONDENSED MATTER (HEPCM 2019): Proceedings of the XXVI Conference on High-Energy Processes in Condensed Matter, dedicated to the 150th anniversary of the birth of S.A. Chaplygin, 2019, 030101  crossref
    6. A. V. Potapkin, D. Yu. Moskvichev, “Sonic boom mitigation by means of incident flow heating”, Tech. Phys. Lett., 45:5 (2019), 515–518  mathnet  mathnet  crossref  crossref
    7. D Yu Moskvichev, A V Potapkin, “Gas-dynamic factors controlling the level of the sonic boom generated by two bodies in a supersonic flow”, J. Phys.: Conf. Ser., 1404:1 (2019), 012090  crossref
    8. V. I. Zvegintsev, A. V. Potapkin, “The aeroballistic technique for studying sonic-boom characteristics”, Thermophys. Aeromech., 25:3 (2018), 321  crossref
    9. A. V. Potapkin, D. Yu. Moskvichev, “Sonic boom generated by a slender body aerodynamically shaded by a disk spike”, Shock Waves, 28:6 (2018), 1239  crossref
    10. A. V. Potapkin, D. Yu. Moskvichev, AIP Conference Proceedings, 1893, 2017, 030156  crossref
    11. A. V. Potapkin, D. Yu. Moskvichev, “Reduction of the sonic boom level by heating the flow in front of the body”, Shock Waves, 24:4 (2014), 429  crossref
    12. A. V. Potapkin, D. Yu. Moskvichev, “Controlling the sonic boom from a thin body by means of local heating of the incoming flow”, Shock Waves, 23:6 (2013), 649  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:46
    Full-text PDF :7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025