Loading [MathJax]/jax/output/SVG/config.js
Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2012, Volume 53, Issue 4, Pages 124–137 (Mi pmtf1389)  

This article is cited in 5 scientific papers (total in 5 papers)

Surface topography formation in a region of plate collision: Mathematical modeling

S. N. Korobeinikovab, V. V. Reverdattoc, O. P. Polyanskiic, V. G. Sverdlovac, A. V. Babichevc

a Lavrent’ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
b Novosibirsk State University, Novosibirsk, 630090, Russia
c Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
Full-text PDF (357 kB) Citations (5)
Abstract: The collision of earth’s crustal plates is modeled mathematically based on a numerical solution of the equations of deformable solid mechanics using a finite element method with the MSC software. The interaction of the plates with each other and with the mantle is described by the solution of the contact problem with an unknown contact boundary between the solids considered. The mantle material is assumed to be ideal elastic-plastic with the Huber–Mises yield surface, and the properties of the plate material are described using an elastic-plastic model with the Drucker–Prager parabolic yield function which takes into account fracture in the tensile stress region. The results of the mathematical modeling show that the surface profiles of the plates in the region of their collision are consistent, both qualitatively and quantitatively, to the surface topography observed in nature under similar conditions.
Keywords: geodynamic processes, overthrust, subduction, computer modeling.
Received: 15.02.2011
Accepted: 16.09.2011
English version:
Journal of Applied Mechanics and Technical Physics, 2012, Volume 53, Issue 4, Pages 577–588
DOI: https://doi.org/10.1134/S0021894412040128
Bibliographic databases:
Document Type: Article
UDC: 551.251:519.771.3
Language: Russian
Citation: S. N. Korobeinikov, V. V. Reverdatto, O. P. Polyanskii, V. G. Sverdlova, A. V. Babichev, “Surface topography formation in a region of plate collision: Mathematical modeling”, Prikl. Mekh. Tekh. Fiz., 53:4 (2012), 124–137; J. Appl. Mech. Tech. Phys., 53:4 (2012), 577–588
Citation in format AMSBIB
\Bibitem{KorRevPol12}
\by S.~N.~Korobeinikov, V.~V.~Reverdatto, O.~P.~Polyanskii, V.~G.~Sverdlova, A.~V.~Babichev
\paper Surface topography formation in a region of plate collision: Mathematical modeling
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2012
\vol 53
\issue 4
\pages 124--137
\mathnet{http://mi.mathnet.ru/pmtf1389}
\elib{https://elibrary.ru/item.asp?id=17994677}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2012
\vol 53
\issue 4
\pages 577--588
\crossref{https://doi.org/10.1134/S0021894412040128}
Linking options:
  • https://www.mathnet.ru/eng/pmtf1389
  • https://www.mathnet.ru/eng/pmtf/v53/i4/p124
  • This publication is cited in the following 5 articles:
    1. Sergey N. Korobeynikov, A. Yu. Larichkin, “Simulating body deformations with initial stresses using Hooke‐like isotropic hypoelasticity models based on corotational stress rates”, Z Angew Math Mech, 104:2 (2024)  crossref
    2. S. N. Korobeynikov, “Analysis of Hooke-like isotropic hypoelasticity models in view of applications in FE formulations”, Arch Appl Mech, 90:2 (2020), 313  crossref
    3. O.P. Polyansky, S.A. Kargopolov, A.V. Babichev, V.V. Reverdatto, “High-Grade Metamorphism and Anatexis in the Teletskoe–Chulyshman Belt (Gorny Altai): U–Pb Geochronology, P–T Estimates, and Thermal Tectonic Model”, Russian Geology and Geophysics, 60:12 (2019), 1425  crossref
    4. Olga Dornyak, Olga Dornyak, Mikhail Drapalyuk, Mikhail Drapalyuk, Igor Kazakov, Igor' Kazakov, Elman Orudzhov, El'man Orudzhov, “MATHEMATICAL MODEL OF THE SOIL STRESS-STRAIN STATE IN THE PROCESS OF ITS INTERACTION WITH THE WORKING BODIES OF THE DIGGING MACHINE”, Forestry Engineering Journal, 9:2 (2019), 157  crossref
    5. V. A. Rodin, S. V. Sinegubov, “Matematicheskoe modelirovanie relefov s pomoschyu modifitsirovannykh funktsii Gaussa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 12:3 (2019), 63–73  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:60
    Full-text PDF :19
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025