Loading [MathJax]/jax/output/SVG/config.js
Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2015, Volume 56, Issue 6, Pages 166–172
DOI: https://doi.org/10.15372/PMTF20150618
(Mi pmtf1296)
 

This article is cited in 16 scientific papers (total in 16 papers)

Fracture of brittle geomaterial with a circular hole under biaxial loading

S. V. Suknev

Chersky Institute of Mining of the North, Siberian Branch, Russian Academy of Sciences, Yakutsk, 677980, Russia
Abstract: The influence of boundary conditions on the fracture of brittle geomaterial in the stress concentration zone under biaxial loading with account for the size effect is theoretically and experimentally studied. The calculation results are compared with the experimental data.
Keywords: fracture, geomaterials, size effect, stress concentration, hole, nonlocal fracture criteria.
Received: 10.07.2014
Revised: 18.12.2014
English version:
Journal of Applied Mechanics and Technical Physics, 2015, Volume 56, Issue 6, Pages 1078–1083
DOI: https://doi.org/10.1134/S0021894415060188
Bibliographic databases:
Document Type: Article
UDC: 539.4:622.023.23
Language: Russian
Citation: S. V. Suknev, “Fracture of brittle geomaterial with a circular hole under biaxial loading”, Prikl. Mekh. Tekh. Fiz., 56:6 (2015), 166–172; J. Appl. Mech. Tech. Phys., 56:6 (2015), 1078–1083
Citation in format AMSBIB
\Bibitem{Suk15}
\by S.~V.~Suknev
\paper Fracture of brittle geomaterial with a circular hole under biaxial loading
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2015
\vol 56
\issue 6
\pages 166--172
\mathnet{http://mi.mathnet.ru/pmtf1296}
\crossref{https://doi.org/10.15372/PMTF20150618}
\elib{https://elibrary.ru/item.asp?id=25373171}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2015
\vol 56
\issue 6
\pages 1078--1083
\crossref{https://doi.org/10.1134/S0021894415060188}
Linking options:
  • https://www.mathnet.ru/eng/pmtf1296
  • https://www.mathnet.ru/eng/pmtf/v56/i6/p166
  • This publication is cited in the following 16 articles:
    1. V. V. Glagolev, A. A. Markin, “Brittle Fracture of an Elastic Layer with a Defect in the Form of a Circle under Biaxial Loading”, Mech. Solids, 59:1 (2024), 27  crossref
    2. V. V. Glagolev, A. A. Markin, “Brittle fracture of an elastic layer with a defect in the form of a circle under biaxial loading”, Izvestiâ Rossijskoj akademii nauk. Mehanika tverdogo tela, 2024, no. 1, 223  crossref
    3. V. I. Karev, Yu. F. Kovalenko, “Scale Effect in Modeling of Mechanical Processes in the Vicinity of a Borhole on a True Triaxial Loading Setup”, Mech. Solids, 59:4 (2024), 1940  crossref
    4. V. V. Glagolev, A. A. Markin, “Effect of a linear parameter on the brittle fracture of an elastic layer with a circular hole”, J. Appl. Mech. Tech. Phys., 64:5 (2024), 871–877  mathnet  crossref  crossref  elib
    5. S. V. Suknev, “Application of Methods of the Theory of Critical Distances to Estimate the Fracture of Quasi-Brittle Materials with Notches”, Izvestiâ Rossijskoj akademii nauk. Mehanika tverdogo tela, 2023, no. 1, 129  crossref
    6. S. V. Suknev, “Application of Methods of the Theory of Critical Distances to Estimate the Fracture of Quasi-Brittle Materials with Notches”, Mech. Solids, 58:1 (2023), 108  crossref
    7. A. Sapora, G. Efremidis, P. Cornetti, “Non-local criteria for the borehole problem: Gradient Elasticity versus Finite Fracture Mechanics”, Meccanica, 57:4 (2022), 871  crossref
    8. S. V. Suknev, “APPLICATION OF THE FINITE FRACTURE MECHANICS APPROACH TO ASSESS THE FAILURE OF A QUASI-BRITTLE MATERIAL WITH A CIRCULAR HOLE”, Mech. Solids, 56:3 (2021), 301  crossref
    9. S.V. Suknev, “Extending the theory of critical distances to quasi-brittle fracture”, Theoretical and Applied Fracture Mechanics, 114 (2021), 102996  crossref
    10. SV Suknev, “Fracture of quasi-brittle geomaterials with a circular hole under compression”, IOP Conf. Ser.: Earth Environ. Sci., 773:1 (2021), 012082  crossref
    11. A. Sapora, G. Efremidis, P. Cornetti, “Comparison between two nonlocal criteria: A case study on pressurized holes”, Procedia Structural Integrity, 33 (2021), 456  crossref
    12. Sergey Suknev, I. Rasskazov, S. Tkach, “Experimental modelling of a mine working failure under nonuniformly distributed compression”, E3S Web Conf., 192 (2020), 01025  crossref
    13. S.V. Suknev, “Modelling quasi-brittle fracture initiation at a circular hole under biaxial loading”, Procedia Structural Integrity, 30 (2020), 179  crossref
    14. S.V. Suknev, “Application of the Theory of Critical Distances to quasi-brittle fracture with a developed process zone”, Procedia Structural Integrity, 28 (2020), 903  crossref
    15. V. P. Efimov, “Integral Criterion for Determination of Tensile Strength and Fracture Toughness of Rocks”, J Min Sci, 55:3 (2019), 383  crossref
    16. Sergey Suknev, I. Rasskazov, S. Kornilkov, S. Tkach, “Nonlocal Criteria for Brittle and Quasi-Brittle Fracture of Geomaterials and Rocks”, E3S Web Conf., 56 (2018), 02003  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:53
    Full-text PDF :12
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025