Abstract:
A two-dimensional model of an anisotropic crystalline material with cubic symmetry is considered. This model consists of a square lattice of round rigid particles, each possessing two translational and one rotational degree of freedom. Differential equations that describe propagation of elastic and rotational waves in such a medium are derived. A relationship between three groups of parameters is found: second-order elastic constants, acoustic wave velocities, and microstructure parameters. Values of the microstructure parameters of the considered anisotropic material at which its Poisson's ratios become negative are found.
Keywords:
crystal with a cubic lattice, negative Poisson's ratios, microstructure parameters, parametric identification.
Citation:
V. I. Erofeev, I. S. Pavlov, “Parametric identification of crystals having a cubic lattice with negative Poisson's ratios”, Prikl. Mekh. Tekh. Fiz., 56:6 (2015), 94–101; J. Appl. Mech. Tech. Phys., 56:6 (2015), 1015–1022
\Bibitem{EroPav15}
\by V.~I.~Erofeev, I.~S.~Pavlov
\paper Parametric identification of crystals having a cubic lattice with negative Poisson's ratios
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2015
\vol 56
\issue 6
\pages 94--101
\mathnet{http://mi.mathnet.ru/pmtf1289}
\crossref{https://doi.org/10.15372/PMTF20150611}
\elib{https://elibrary.ru/item.asp?id=25373164}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2015
\vol 56
\issue 6
\pages 1015--1022
\crossref{https://doi.org/10.1134/S0021894415060115}
Linking options:
https://www.mathnet.ru/eng/pmtf1289
https://www.mathnet.ru/eng/pmtf/v56/i6/p94
This publication is cited in the following 16 articles:
A. F. Revuzhenko, “Two Concepts of Continuum Deformation Kinematics: Displacement Field of Points and Displacement Fields of Material Planes”, J Min Sci, 60:4 (2024), 567
A. I. Demin, M. A. Volkov, V. A. Gorodtsov, D. S. Lisovenko, “Auxetics among Two-Layered Composites Made of Cubic Crystals. Analytical and Numerical Analysis”, Izvestiâ Rossijskoj akademii nauk. Mehanika tverdogo tela, 2023, no. 1, 166
A. I. Demin, M. A. Volkov, V. A. Gorodtsov, D. S. Lisovenko, “Auxetics among Two-Layered Composites Made of Cubic Crystals. Analytical and Numerical Analysis”, Mech. Solids, 58:1 (2023), 140
A. F. Revuzhenko, “Three-Dimensional Model of a Structured Linearly Elastic Body”, Phys Mesomech, 25:1 (2022), 33
I. S. Pavlov, S. V. Dmitriev, A. A. Vasiliev, A. V. Muravieva, “Models and auxetic characteristics of a simple cubic lattice of spherical particles”, Continuum Mech. Thermodyn., 2022
S. Benatmane, “Theoretical investigations of structural, mechanical, electronic, and thermodynamic properties of BaNYO (Y = Mg, Ca, and Sr) alloys”, emergent mater., 5:6 (2022), 1797
A. F. Revuzhenko, “Multi-Scale Mathematical Models of Geomedia”, J Min Sci, 58:3 (2022), 347
Vladimir I. Erofeev, Igor S. Pavlov, Advanced Structured Materials, 144, Structural Modeling of Metamaterials, 2021, 83
Alexey V. Porubov, Alena E. Osokina, Ilya D. Antonov, Advanced Structured Materials, 122, Nonlinear Wave Dynamics of Materials and Structures, 2020, 309
A.V. Porubov, A.E. Osokina, “Double dispersion equation for nonlinear waves in a graphene-type hexagonal lattice”, Wave Motion, 89 (2019), 185
Mikhail Volkov, Valentin Gorodtsov, Dmitry Lisovenko, “Variability of elastic properties of chiral monoclinic tubes under extension and torsion”, Lett. Mater., 9:2 (2019), 202
Aleksey Vasiliev, Igor Pavlov, “Models and some properties of Cosserat triangular lattices with chiral microstructure”, LOM, 9:1 (2019), 45
S. Benatmane, B. Bouhafs, “Investigation of new d0 half-metallic full-heusler alloys N2BaX (X=Rb, Cs, Ca and Sr) using first-principle calculations”, Computational Condensed Matter, 19 (2019), e00371
A A Vasiliev, I S Pavlov, “Structural and mathematical modeling of Cosserat lattices composed of particles of finite size and with complex connections”, IOP Conf. Ser.: Mater. Sci. Eng., 447 (2018), 012079
A.V. Porubov, A.M. Krivtsov, A.E. Osokina, “Two-dimensional waves in extended square lattice”, International Journal of Non-Linear Mechanics, 99 (2018), 281
A. V. Porubov, Advanced Structured Materials, 87, Advances in Mechanics of Microstructured Media and Structures, 2018, 263