Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2013, Volume 54, Issue 5, Pages 154–168 (Mi pmtf1147)  

This article is cited in 8 scientific papers (total in 8 papers)

Diffusion in a generalized thermoelastic solid in an infinite body with a cylindrical cavity

J. N. Sharma, N. Kumari, K. K. Sharma

National Institute of Technology, Hamirpur, 177005, India
Full-text PDF (277 kB) Citations (8)
Abstract: A dynamic problem of an infinite isotropic cylinder of radius r subjected to boundary conditions of the radial stress, temperature, or concentration of the diffusing substance is studied by using the equations of state of a elastothermodiffusive solid with one relaxation time and the Laplace transform technique. The distributions of the displacement, temperature, and concentration are displayed graphically and analytically.
Keywords: cylindrical cavity, infinite space, diffusion, thermoelasticity, small time approximation.
Received: 27.03.2012
English version:
Journal of Applied Mechanics and Technical Physics, 2013, Volume 54, Issue 5, Pages 819–831
DOI: https://doi.org/10.1134/S0021894413050155
Bibliographic databases:
Document Type: Article
UDC: 539.3; 536.4
Language: Russian
Citation: J. N. Sharma, N. Kumari, K. K. Sharma, “Diffusion in a generalized thermoelastic solid in an infinite body with a cylindrical cavity”, Prikl. Mekh. Tekh. Fiz., 54:5 (2013), 154–168; J. Appl. Mech. Tech. Phys., 54:5 (2013), 819–831
Citation in format AMSBIB
\Bibitem{ShaKumSha13}
\by J.~N.~Sharma, N.~Kumari, K.~K.~Sharma
\paper Diffusion in a generalized thermoelastic solid in an infinite body with a cylindrical cavity
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2013
\vol 54
\issue 5
\pages 154--168
\mathnet{http://mi.mathnet.ru/pmtf1147}
\elib{https://elibrary.ru/item.asp?id=20653901}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2013
\vol 54
\issue 5
\pages 819--831
\crossref{https://doi.org/10.1134/S0021894413050155}
Linking options:
  • https://www.mathnet.ru/eng/pmtf1147
  • https://www.mathnet.ru/eng/pmtf/v54/i5/p154
  • This publication is cited in the following 8 articles:
    1. Samia M. Said, Adnan Jahangir, “Reflection of waves in a magneto-thermoelastic medium with diffusion in the context of memory-dependent derivative theory”, Indian J Phys, 97:9 (2023), 2755  crossref
    2. Faris S. Alzahrani, Ibrahim A. Abbas, “Eigenvalues approach on thermo-elastic diffusions problem for an infinite material containing spherical holes”, Waves in Random and Complex Media, 2022, 1  crossref
    3. Aatef Hobiny, Ibrahim Abbas, “Generalized Thermo-Diffusion Interaction in an Elastic Medium under Temperature Dependent Diffusivity and Thermal Conductivity”, Mathematics, 10:15 (2022), 2773  crossref
    4. A. G. Knyazeva, E. S. Parfenova, “Nonlinear coupled model of surface treatment by a particle beam taking into account the formation of a new phase”, J. Appl. Mech. Tech. Phys., 62:4 (2021), 633–641  mathnet  crossref  crossref
    5. Ashraf M. Zenkour, Daoud S. Mashat, Ashraf M. Allehaibi, “Thermoelastic Coupling Response of an Unbounded Solid with a Cylindrical Cavity Due to a Moving Heat Source”, Mathematics, 10:1 (2021), 9  crossref
    6. Aatef D. Hobiny, Ibrahim A. Abbas, “Finite Element Analysis of Thermal-Diffusions Problem for Unbounded Elastic Medium Containing Spherical Cavity under DPL Model”, Mathematics, 9:21 (2021), 2782  crossref
    7. Minjie Wen, Jinming Xu, Houren Xiong, “Thermo-hydro-mechanical dynamic response of a cylindrical lined tunnel in a poroelastic medium with fractional thermoelastic theory”, Soil Dynamics and Earthquake Engineering, 130 (2020), 105960  crossref
    8. Ibrahim A. Abbas, “Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity”, Applied Mathematical Modelling, 39:20 (2015), 6196  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:45
    Full-text PDF :22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025