Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2013, Volume 54, Issue 6, Pages 45–59 (Mi pmtf1120)  

This article is cited in 25 scientific papers (total in 25 papers)

Dispersion of a cloud of particles by a moving shock: Effects of the shape, angle of rotation, and aspect ratio

S. L. Davisa, T. B. Dittmanna, G. B. Jacobsa, W.-S. Donb

a San Diego State University, San Diego, CA, 92182, USA
b Hong Kong Baptist University, Hong Kong, China
Abstract: This paper discusses the particle-laden flow development from a cloud of particles in an accelerated flow behind a normal moving shock. The effects of the aspect ratio of a rectangular and ellipsoidal cloud and the cloud's angle of attack with respect to the carrier flow are studied. Computations are performed with an in-house high-order weighted essentially non-oscillatory (WENO-Z) finite-difference scheme-based Eulerian–Lagrangian solver that solves the conservation equations in the Eulerian frame, while particles are traced in the Lagrangian frame. Streamlined elliptically shaped clouds exhibit a lower dispersion than blunt rectangular clouds. The averaged and root-mean-square locations of the particle coordinates in the cloud show that the cloud's streamwise convection velocity increases with decreasing aspect ratio. With increasing rotation angle, the cross-stream dispersion increases if the aspect ratio is larger than unity. The particle-laden flow development of an initially moderately rotated rectangle is qualitatively and quantitatively comparable to the dispersion of an initially triangular cloud.
Keywords: dispersion of particles, shock wave, high-order finite-difference monotonic scheme.
Received: 09.07.2012
English version:
Journal of Applied Mechanics and Technical Physics, 2013, Volume 54, Issue 6, Pages 900–912
DOI: https://doi.org/10.1134/S0021894413060059
Bibliographic databases:
Document Type: Article
UDC: 532; 533.7
Language: Russian
Citation: S. L. Davis, T. B. Dittmann, G. B. Jacobs, W.-S. Don, “Dispersion of a cloud of particles by a moving shock: Effects of the shape, angle of rotation, and aspect ratio”, Prikl. Mekh. Tekh. Fiz., 54:6 (2013), 45–59; J. Appl. Mech. Tech. Phys., 54:6 (2013), 900–912
Citation in format AMSBIB
\Bibitem{DavDitJac13}
\by S.~L.~Davis, T.~B.~Dittmann, G.~B.~Jacobs, W.-S.~Don
\paper Dispersion of a cloud of particles by a moving shock: Effects of the shape, angle of rotation, and aspect ratio
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2013
\vol 54
\issue 6
\pages 45--59
\mathnet{http://mi.mathnet.ru/pmtf1120}
\elib{https://elibrary.ru/item.asp?id=20929435}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2013
\vol 54
\issue 6
\pages 900--912
\crossref{https://doi.org/10.1134/S0021894413060059}
Linking options:
  • https://www.mathnet.ru/eng/pmtf1120
  • https://www.mathnet.ru/eng/pmtf/v54/i6/p45
  • This publication is cited in the following 25 articles:
    1. Panpan Han, Kun Xue, “Shock attenuation of dense granular media”, J. Fluid Mech., 1009 (2025)  crossref
    2. Konstantin Volkov, “Interaction of a Dense Layer of Solid Particles with a Shock Wave Propagating in a Tube”, Aerospace, 11:10 (2024), 850  crossref
    3. Victor Boniou, Rodney O. Fox, Jacob W. Posey, Ryan W. Houim, “A multiphase model for fluid–particle flows with added mass and phase change”, Chemical Engineering Journal, 2024, 157967  crossref
    4. Justin L. Wagner, Kyle Daniel, Charley Downing, Thomas W. Grasser, Kyle P. Lynch, AIAA SCITECH 2023 Forum, 2023  crossref
    5. Kyle A. Daniel, Justin L. Wagner, “The shock-induced dispersal of particle curtains with varying material density”, International Journal of Multiphase Flow, 152 (2022), 104082  crossref
    6. Sergey Kiselev, Vladimir Kiselev, Viktor Zaikovskii, “Numerical Simulation of the Flow in Two-Phase Supersonic Underexpanded Gas–Particle Jets Exhausting into a Slotted Submerged Space”, Aerospace, 9:8 (2022), 432  crossref
    7. Kyle Daniel, Paul Farias, Justin L. Wagner, AIAA Scitech 2021 Forum, 2021  crossref
    8. Andreas Nygård Osnes, Magnus Vartdal, Marianne Gjestvold Omang, Bjørn Anders Pettersson Reif, “Particle-resolved simulations of shock-induced flow through particle clouds at different Reynolds numbers”, Phys. Rev. Fluids, 5:1 (2020)  crossref
    9. Samuel J. Petter, Kyle P. Lynch, Paul Farias, Seth Spitzer, Thomas Grasser, Justin L. Wagner, AIAA Scitech 2020 Forum, 2020  crossref
    10. D. V. Sadin, V. A. Davidchuk, “Interaction of a Plane Shock Wave with Regions of Varying Shape and Density in a Finely Divided Gas Suspension”, J Eng Phys Thermophy, 93:2 (2020), 474  crossref
    11. Edward P. DeMauro, Justin L. Wagner, Lawrence J. DeChant, Steven J. Beresh, Aaron M. Turpin, “Improved scaling laws for the shock-induced dispersal of a dense particle curtain”, J. Fluid Mech., 876 (2019), 881  crossref
    12. Søren Taverniers, H.S. Udaykumar, Gustaaf B. Jacobs, “Two-way coupled Cloud-In-Cell modeling of non-isothermal particle-laden flows: A Subgrid Particle-Averaged Reynolds Stress-Equivalent (SPARSE) formulation”, Journal of Computational Physics, 390 (2019), 595  crossref
    13. Kyle P. Lynch, Justin L. Wagner, AIAA Scitech 2019 Forum, 2019  crossref
    14. K. Fujisawa, T. L. Jackson, S. Balachandar, “Influence of baroclinic vorticity production on unsteady drag coefficient in shock–particle interaction”, Journal of Applied Physics, 125:8 (2019)  crossref
    15. John B. Middlebrooks, Constantine G. Avgoustopoulos, Wolfgang J. Black, Roy C. Allen, Jacob A. McFarland, “Droplet and multiphase effects in a shock-driven hydrodynamic instability with reshock”, Exp Fluids, 59:6 (2018)  crossref
    16. Y. Ling, S. Balachandar, “Simulation and scaling analysis of a spherical particle-laden blast wave”, Shock Waves, 28:3 (2018), 545  crossref
    17. Edward P. DeMauro, Justin L. Wagner, Lawrence J. DeChant, Steven J. Beresh, Paul Farias, Aaron Turpin, William Sealy, Samuel Albert, Patrick Sanderson, 55th AIAA Aerospace Sciences Meeting, 2017  crossref
    18. Sean L. Davis, Gustaaf B. Jacobs, Oishik Sen, H. S. Udaykumar, “SPARSE—A subgrid particle averaged Reynolds stress equivalent model: testing witha prioriclosure”, Proc. R. Soc. A., 473:2199 (2017), 20160769  crossref
    19. Edward P. DeMauro, Justin L. Wagner, Steven J. Beresh, Paul A. Farias, “Unsteady drag following shock wave impingement on a dense particle curtain measured using pulse-burst PIV”, Phys. Rev. Fluids, 2:6 (2017)  crossref
    20. P. Sridharan, T. L. Jackson, J. Zhang, S. Balachandar, S. Thakur, “Shock interaction with deformable particles using a constrained interface reinitialization scheme”, Journal of Applied Physics, 119:6 (2016)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:55
    Full-text PDF :12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025