Abstract:
This paper discusses the particle-laden flow development from a cloud of particles in an accelerated flow behind a normal moving shock. The effects of the aspect ratio of a rectangular and ellipsoidal cloud and the cloud's angle of attack with respect to the carrier flow are studied. Computations are performed with an in-house high-order weighted essentially non-oscillatory (WENO-Z) finite-difference scheme-based Eulerian–Lagrangian solver that solves the conservation equations in the Eulerian frame, while particles are traced in the Lagrangian frame. Streamlined elliptically shaped clouds exhibit a lower dispersion than blunt rectangular clouds. The averaged and root-mean-square locations of the particle coordinates in the cloud show that the cloud's streamwise convection velocity increases with decreasing aspect ratio. With increasing rotation angle, the cross-stream dispersion increases if the aspect ratio is larger than unity. The particle-laden flow development of an initially moderately rotated rectangle is qualitatively and quantitatively comparable to the dispersion of an initially triangular cloud.
Keywords:
dispersion of particles, shock wave, high-order finite-difference monotonic scheme.
Citation:
S. L. Davis, T. B. Dittmann, G. B. Jacobs, W.-S. Don, “Dispersion of a cloud of particles by a moving shock: Effects of the shape, angle of rotation, and aspect ratio”, Prikl. Mekh. Tekh. Fiz., 54:6 (2013), 45–59; J. Appl. Mech. Tech. Phys., 54:6 (2013), 900–912
\Bibitem{DavDitJac13}
\by S.~L.~Davis, T.~B.~Dittmann, G.~B.~Jacobs, W.-S.~Don
\paper Dispersion of a cloud of particles by a moving shock: Effects of the shape, angle of rotation, and aspect ratio
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2013
\vol 54
\issue 6
\pages 45--59
\mathnet{http://mi.mathnet.ru/pmtf1120}
\elib{https://elibrary.ru/item.asp?id=20929435}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2013
\vol 54
\issue 6
\pages 900--912
\crossref{https://doi.org/10.1134/S0021894413060059}
Linking options:
https://www.mathnet.ru/eng/pmtf1120
https://www.mathnet.ru/eng/pmtf/v54/i6/p45
This publication is cited in the following 25 articles:
Panpan Han, Kun Xue, “Shock attenuation of dense granular media”, J. Fluid Mech., 1009 (2025)
Konstantin Volkov, “Interaction of a Dense Layer of Solid Particles with a Shock Wave Propagating in a Tube”, Aerospace, 11:10 (2024), 850
Victor Boniou, Rodney O. Fox, Jacob W. Posey, Ryan W. Houim, “A multiphase model for fluid–particle flows with added mass and phase change”, Chemical Engineering Journal, 2024, 157967
Justin L. Wagner, Kyle Daniel, Charley Downing, Thomas W. Grasser, Kyle P. Lynch, AIAA SCITECH 2023 Forum, 2023
Kyle A. Daniel, Justin L. Wagner, “The shock-induced dispersal of particle curtains with varying material density”, International Journal of Multiphase Flow, 152 (2022), 104082
Sergey Kiselev, Vladimir Kiselev, Viktor Zaikovskii, “Numerical Simulation of the Flow in Two-Phase Supersonic Underexpanded Gas–Particle Jets Exhausting into a Slotted Submerged Space”, Aerospace, 9:8 (2022), 432
Kyle Daniel, Paul Farias, Justin L. Wagner, AIAA Scitech 2021 Forum, 2021
Andreas Nygård Osnes, Magnus Vartdal, Marianne Gjestvold Omang, Bjørn Anders Pettersson Reif, “Particle-resolved simulations of shock-induced flow through particle clouds at different Reynolds numbers”, Phys. Rev. Fluids, 5:1 (2020)
Samuel J. Petter, Kyle P. Lynch, Paul Farias, Seth Spitzer, Thomas Grasser, Justin L. Wagner, AIAA Scitech 2020 Forum, 2020
D. V. Sadin, V. A. Davidchuk, “Interaction of a Plane Shock Wave with Regions of Varying Shape and Density in a Finely Divided Gas Suspension”, J Eng Phys Thermophy, 93:2 (2020), 474
Edward P. DeMauro, Justin L. Wagner, Lawrence J. DeChant, Steven J. Beresh, Aaron M. Turpin, “Improved scaling laws for the shock-induced dispersal of a dense particle curtain”, J. Fluid Mech., 876 (2019), 881
Søren Taverniers, H.S. Udaykumar, Gustaaf B. Jacobs, “Two-way coupled Cloud-In-Cell modeling of non-isothermal particle-laden flows: A Subgrid Particle-Averaged Reynolds Stress-Equivalent (SPARSE) formulation”, Journal of Computational Physics, 390 (2019), 595
Kyle P. Lynch, Justin L. Wagner, AIAA Scitech 2019 Forum, 2019
K. Fujisawa, T. L. Jackson, S. Balachandar, “Influence of baroclinic vorticity production on unsteady drag coefficient in shock–particle interaction”, Journal of Applied Physics, 125:8 (2019)
John B. Middlebrooks, Constantine G. Avgoustopoulos, Wolfgang J. Black, Roy C. Allen, Jacob A. McFarland, “Droplet and multiphase effects in a shock-driven hydrodynamic instability with reshock”, Exp Fluids, 59:6 (2018)
Y. Ling, S. Balachandar, “Simulation and scaling analysis of a spherical particle-laden blast wave”, Shock Waves, 28:3 (2018), 545
Edward P. DeMauro, Justin L. Wagner, Lawrence J. DeChant, Steven J. Beresh, Paul Farias, Aaron Turpin, William Sealy, Samuel Albert, Patrick Sanderson, 55th AIAA Aerospace Sciences Meeting, 2017
Sean L. Davis, Gustaaf B. Jacobs, Oishik Sen, H. S. Udaykumar, “SPARSE—A subgrid particle averaged Reynolds stress equivalent model: testing witha prioriclosure”, Proc. R. Soc. A., 473:2199 (2017), 20160769
Edward P. DeMauro, Justin L. Wagner, Steven J. Beresh, Paul A. Farias, “Unsteady drag following shock wave impingement on a dense particle curtain measured using pulse-burst PIV”, Phys. Rev. Fluids, 2:6 (2017)
P. Sridharan, T. L. Jackson, J. Zhang, S. Balachandar, S. Thakur, “Shock interaction with deformable particles using a constrained interface reinitialization scheme”, Journal of Applied Physics, 119:6 (2016)