Loading [MathJax]/jax/output/SVG/config.js
Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2014, Volume 55, Issue 1, Pages 218–226 (Mi pmtf1115)  

This article is cited in 22 scientific papers (total in 22 papers)

Theory of rolling: solution of the Coulomb problem

G. P. Cherepanov

New York Academy of Sciences, New York, USA
Abstract: A theory of rolling of round bodies in the normal mode with adhesion conditions satisfied on the entire contact area is proposed. This theory refines the classical Coulomb's theory of rolling in which the rolling moment is directly proportional to the pressing force (e.g., the weight of the rolling body). The rolling moment of cylinders is found to be directly proportional to the pressing force raised to a power of 3/2, and the rolling moment of balls and tori is proportional to the pressing force raised to a power of 4/3. It is shown that the normal mode of uniform rolling can only be provided for a certain ratio of the elastic constants of the materials of the round body and the base forming an ideal pair. The Coulomb problem is solved for the cases of rolling of an elastic cylinder over an elastic half-space, of an elastic ball over an elastic half-space, of an elastic torus over an elastic half-space, and of a cylinder and ball over a tightly stretched membrane. The rolling law is derived for such cases. The rolling friction coefficients, the rolling moment, and the rolling friction force are calculated.
Keywords: theory of rolling, Coulomb problem, rolling law, rolling moment, rolling friction coefficient, normal mode of rolling.
Received: 20.06.2013
English version:
Journal of Applied Mechanics and Technical Physics, 2014, Volume 55, Issue 1, Pages 182–189
DOI: https://doi.org/10.1134/S0021894414010210
Bibliographic databases:
Document Type: Article
UDC: 531.45
Language: Russian
Citation: G. P. Cherepanov, “Theory of rolling: solution of the Coulomb problem”, Prikl. Mekh. Tekh. Fiz., 55:1 (2014), 218–226; J. Appl. Mech. Tech. Phys., 55:1 (2014), 182–189
Citation in format AMSBIB
\Bibitem{Che14}
\by G.~P.~Cherepanov
\paper Theory of rolling: solution of the Coulomb problem
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2014
\vol 55
\issue 1
\pages 218--226
\mathnet{http://mi.mathnet.ru/pmtf1115}
\elib{https://elibrary.ru/item.asp?id=21903156}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2014
\vol 55
\issue 1
\pages 182--189
\crossref{https://doi.org/10.1134/S0021894414010210}
Linking options:
  • https://www.mathnet.ru/eng/pmtf1115
  • https://www.mathnet.ru/eng/pmtf/v55/i1/p218
  • This publication is cited in the following 22 articles:
    1. Jichao Li, Yi Zhang, Qingxue Shang, Tao Wang, “Experimental study on the static rolling friction coefficient of a flat-roller-flat configuration considering surface roughness”, Structures, 65 (2024), 106711  crossref
    2. Igor Kuzio, Volodymyr Gursky, Pavlo Krot, Radoslaw Zimroz, Tatyana Sorokina, Structural Integrity, 25, Structural Integrity and Fatigue Failure Analysis, 2022, 267  crossref
    3. Stelian Alaci, Florina-Carmen Ciornei, Ionut-Cristian Romanu, “Validation of Nonlinear Dependence of Rolling Friction Moment on the Normal Force for Elastic Materials”, Materials, 15:7 (2022), 2518  crossref
    4. Stelian Alaci, Ilie Muscă, Ștefan-Gheorghe Pentiuc, “Study of the Rolling Friction Coefficient between Dissimilar Materials through the Motion of a Conical Pendulum”, Materials, 13:21 (2020), 5032  crossref
    5. G. P. Cherepanov, “The Laws of Rolling”, Phys Mesomech, 22:3 (2019), 242  crossref
    6. Filipe Marques, Paulo Flores, J. C. Pimenta Claro, Hamid M. Lankarani, “Modeling and analysis of friction including rolling effects in multibody dynamics: a review”, Multibody Syst Dyn, 45:2 (2019), 223  crossref
    7. F C Ciornei, S Alaci, I C Romanu, I Mihai, V C Lazar, “Aspects concerning the friction for the motion on an inclined plane of an axisymmetric body”, IOP Conf. Ser.: Mater. Sci. Eng., 477 (2019), 012036  crossref
    8. F C Ciornei, R D Pentiuc, S Alaci, I C Romanu, S T Siretean, M C Ciornei, “An improved technique of finding the coefficient of rolling friction by inclined plane method”, IOP Conf. Ser.: Mater. Sci. Eng., 514:1 (2019), 012004  crossref
    9. S Alaci, R-D Pentiuc, F C Ciornei, I C Romanu, L Irimescu, F Buium, “Employment of hyper-cycloidal oscillatory motion for finding the coefficient of rolling friction. Part 1: Theoretical model”, IOP Conf. Ser.: Mater. Sci. Eng., 514:1 (2019), 012002  crossref
    10. Genady P. Cherepanov, Invariant Integrals in Physics, 2019, 37  crossref
    11. Genady P. Cherepanov, Invariant Integrals in Physics, 2019, 89  crossref
    12. F C Ciornei, S Alaci, C Dulucheanu, C Ciornei, M C Ciornei, “The effect of mass eccentricity upon tribological test results”, IOP Conf. Ser.: Mater. Sci. Eng., 444 (2018), 022016  crossref
    13. Florina-Carmen Ciornei, Stelian Alaci, Sorinel-Toderas Siretean, Mariana-Catalina Ciornei, Ioan-Bogdan Dragoi, Vlăduţ-Constantin Lazăr, G. Grebenişan, A.V. Pele, “Considerations on finding the rolling and spinning friction coefficients”, MATEC Web Conf., 184 (2018), 01009  crossref
    14. S Alaci, F C Ciornei, I C Romanu, M C Ciornei, “Upon the relationship between rolling friction and sliding friction”, IOP Conf. Ser.: Mater. Sci. Eng., 400 (2018), 042002  crossref
    15. S Alaci, F C Ciornei, C Bujoreanu, M C Ciornei, I L Acsinte, “Finding the coefficient of rolling friction using a pericycloidal pendulum”, IOP Conf. Ser.: Mater. Sci. Eng., 444 (2018), 022015  crossref
    16. F C Ciornei, S Alaci, V I Ciogole, M C Ciornei, “Valuation of coefficient of rolling friction by the inclined plane method”, IOP Conf. Ser.: Mater. Sci. Eng., 200 (2017), 012006  crossref
    17. S Alaci, F C Ciornei, A Ciogole, M C Ciornei, “Estimation of coefficient of rolling friction by the evolvent pendulum method”, IOP Conf. Ser.: Mater. Sci. Eng., 200 (2017), 012005  crossref
    18. G. P. Cherepanov, “Invariant integral: The earliest works and most recent application”, Phys Mesomech, 20:2 (2017), 115  crossref
    19. M C Ciornei, S Alaci, F C Ciornei, I C Romanu, “A method for the determination of the coefficient of rolling friction using cycloidal pendulum”, IOP Conf. Ser.: Mater. Sci. Eng., 227 (2017), 012027  crossref
    20. Stelian Alaci, Luminita Irimescu, Marian-Adrian Popescu, Daniel Fodorcan, Dumitru Amarandei, Florina-Carmen Ciornei, L. Slătineanu, G. Nagit, O. Dodun, V. Merticaru, M. Coteata, M.I. Ripanu, A.M. Mihalache, M. Boca, R. Ibanescu, C.E. Panait, G. Oancea, P. Kyratsis, “Testing the assumption of linear dependence between the rolling friction torque and normal force”, MATEC Web Conf., 112 (2017), 07002  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:54
    Full-text PDF :22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025