Loading [MathJax]/jax/output/SVG/config.js
Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2014, Volume 55, Issue 2, Pages 38–42 (Mi pmtf1078)  

This article is cited in 7 scientific papers (total in 7 papers)

Approximate symmetries and solutions of the Kompaneets equation

R. K. Gazizova, N. H. Ibragimovab

a Ufa State Aviation Technical University, Ufa, 450000, Russia
b Blekinge Institute of Technology, Karlskrona, SE-371 79, Sweden
Full-text PDF (184 kB) Citations (7)
Abstract: Different approximations of the Kompaneets equation are studied using approximate symmetries, which allows consideration of the contributions of all terms of this equation previously neglected in the analysis of the limiting cases.
Keywords: Kompaneets equation, Compton effect, approximate symmetries approximate solutions.
Received: 19.09.2013
English version:
Journal of Applied Mechanics and Technical Physics, 2014, Volume 55, Issue 2, Pages 220–224
DOI: https://doi.org/10.1134/S0021894414020047
Bibliographic databases:
Document Type: Article
UDC: 517.958: 537.84
Language: Russian
Citation: R. K. Gazizov, N. H. Ibragimov, “Approximate symmetries and solutions of the Kompaneets equation”, Prikl. Mekh. Tekh. Fiz., 55:2 (2014), 38–42; J. Appl. Mech. Tech. Phys., 55:2 (2014), 220–224
Citation in format AMSBIB
\Bibitem{GazIbr14}
\by R.~K.~Gazizov, N.~H.~Ibragimov
\paper Approximate symmetries and solutions of the Kompaneets equation
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2014
\vol 55
\issue 2
\pages 38--42
\mathnet{http://mi.mathnet.ru/pmtf1078}
\elib{https://elibrary.ru/item.asp?id=21946324}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2014
\vol 55
\issue 2
\pages 220--224
\crossref{https://doi.org/10.1134/S0021894414020047}
Linking options:
  • https://www.mathnet.ru/eng/pmtf1078
  • https://www.mathnet.ru/eng/pmtf/v55/i2/p38
  • This publication is cited in the following 7 articles:
    1. Matteo Gorgone, Francesco Oliveri, “Approximate Noether Symmetries of Perturbed Lagrangians and Approximate Conservation Laws”, Mathematics, 9:22 (2021), 2900  crossref
    2. Matteo Gorgone, Francesco Oliveri, “Consistent approximate Q-conditional symmetries of PDEs: application to a hyperbolic reaction-diffusion-convection equation”, Z. Angew. Math. Phys., 72:3 (2021)  crossref
    3. Rosa Di Salvo, Matteo Gorgone, Francesco Oliveri, “A consistent approach to approximate Lie symmetries of differential equations”, Nonlinear Dyn, 91:1 (2018), 371  crossref
    4. Matteo Gorgone, “Approximately invariant solutions of creeping flow equations”, International Journal of Non-Linear Mechanics, 105 (2018), 212  crossref
    5. O. González-Gaxiola, J. Ruiz de Chávez, R. Bernal-Jaquez, “Solution of the Nonlinear Kompaneets Equation Through the Laplace-Adomian Decomposition Method”, Int. J. Appl. Comput. Math, 3:2 (2017), 489  crossref
    6. Masatomo Iwasa, “Derivation of Asymptotic Dynamical Systems with Partial Lie Symmetry Groups”, Journal of Applied Mathematics, 2015 (2015), 1  crossref
    7. R.K. Gazizov, N.H. Ibragimov, S.Yu. Lukashchuk, “Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations”, Communications in Nonlinear Science and Numerical Simulation, 23:1-3 (2015), 153  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:84
    Full-text PDF :39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025