|
Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2014, Volume 55, Issue 3, Pages 37–50
(Mi pmtf1061)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Nonlinear-dispersive shallow water equations on a rotating sphere and conservation laws
Z. I. Fedotova, G. S. Khakimzianov Institute of Computational Technologies, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
Abstract:
Nonlinear dispersive shallow water equations on a sphere are obtained without using the potential flow assumption. Boussinesq-type equations for weakly nonlinear waves over a moving bottom are derived. It is found that the total energy balance holds for all obtained nonlinear dispersive equations on a sphere.
Keywords:
shallow water equations on a sphere, surface waves, nonlinear dispersive equations, Boussinesq type equations, energy conservation law.
Received: 13.05.2013
Citation:
Z. I. Fedotova, G. S. Khakimzianov, “Nonlinear-dispersive shallow water equations on a rotating sphere and conservation laws”, Prikl. Mekh. Tekh. Fiz., 55:3 (2014), 37–50; J. Appl. Mech. Tech. Phys., 55:3 (2014), 404–416
Linking options:
https://www.mathnet.ru/eng/pmtf1061 https://www.mathnet.ru/eng/pmtf/v55/i3/p37
|
Statistics & downloads: |
Abstract page: | 25 | Full-text PDF : | 8 |
|