Abstract:
Full $a$-dislocations on the $(0001)$ basal plane, $(10\bar10)$ prismatic plane, and $(10\bar11)$ and $(10\bar12)$ pyramidal planes in pure magnesium are investigated by using the Peierls–Nabarro model combined with generalized stacking fault (GSF) energies from first-principles calculations. The results show that the $(00\bar11)\langle11\bar20\rangle$ and $(10\bar12)\langle11\bar20\rangle$ slip modes have nearly the same GSF energy barriers, which are obviously larger than the GSF energy barriers of the $(0001)\langle11\bar20\rangle$ и $(10\bar10)\langle11\bar20\rangle$ slip modes. For both edge and screw full dislocations, the maximum dislocation densities, Peierls energies, and stresses of dislocations on the $(10\bar10)$, $(0001)$, $(10\bar11)$, and $(10\bar12)$ planes eventually increase. Moreover, the Peierls energies and the stresses of screw full dislocations are always lower than those of edge full dislocations for all slip systems. Dislocations on the $(10\bar11)$ and $(10\bar12)$ pyramidal planes possess smaller core energies, while the $(10\bar10)$ prismatic plane has the largest ones, implying that the formation of full dislocations on the $(10\bar10)$ plane is more difficult.
Citation:
T. Fan, L. Luo, L. Ma, B. Tang, L. Peng, W. Ding, “First-principles study of full $a$-dislocations in pure magnesium”, Prikl. Mekh. Tekh. Fiz., 55:4 (2014), 141–151; J. Appl. Mech. Tech. Phys., 55:4 (2014), 672–681
\Bibitem{FanLuoMa14}
\by T.~Fan, L.~Luo, L.~Ma, B.~Tang, L.~Peng, W.~Ding
\paper First-principles study of full $a$-dislocations in pure magnesium
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2014
\vol 55
\issue 4
\pages 141--151
\mathnet{http://mi.mathnet.ru/pmtf1052}
\elib{https://elibrary.ru/item.asp?id=21946375}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2014
\vol 55
\issue 4
\pages 672--681
\crossref{https://doi.org/10.1134/S0021894414040130}
Linking options:
https://www.mathnet.ru/eng/pmtf1052
https://www.mathnet.ru/eng/pmtf/v55/i4/p141
This publication is cited in the following 3 articles:
Suraj Singhaneka, Ryosuke Matsumoto, “Evaluating the influence of non-glide strain on prismatic dislocation in Mg using density functional theory calculations and the Peierls–Nabarro model”, Computational Materials Science, 230 (2023), 112458
Zhuoliang Li, Hua Ding, Mechanisms and Machine Science, 99, Proceedings of MEACM 2020, 2021, 1
Magnesium Alloys as Degradable Biomaterials, 2015, 457