|
This article is cited in 1 scientific paper (total in 1 paper)
Magneto-electroacoustic dynamics in a straintronic random access memory cell
V. L. Preobrazhenskiia, L. M. Krutyanskya, N. Tiercelinbcd, P. Pernodbcd a Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow
b Université de Lille, France
c Centre National de la Recherche Scientifique, Paris
d Joint International Laboratory LIA LICS, Lille, France
Abstract:
The straintronic principle of nonvolatile magnetoelectric random access memory (MELRAM) is attracting attention because of the prospect of achieving ultra-low-power consumption in memory devices on its basis. The mechanism of switching magnetic moments by pulse deformation of elastically coupled magnetic and piezoelectric subsystems is associated with the excitation of acoustic oscillations in memory cells. The oscillation period in nanoscale cells is comparable to the switching time of magnetic moments, which can distort the process of recording information. The influence of acoustic excitations on the dynamics of magnetic switching has been investigated using numerical simulation in relation to a magnetostrictive cell of 50 $\times$ 50 $\times$ 400-nm size on a PMN-PT $\langle$011$\rangle$ piezoelectric substrate. The parameters of the control electrical pulses providing stable binary switching of the system magnetic states have been determined.
Keywords:
piezoelectric–magnetic, impulse deformation, acoustic oscillations, magnetization switching.
Received: 30.09.2019 Revised: 30.09.2019 Accepted: 07.10.2019
Citation:
V. L. Preobrazhenskii, L. M. Krutyansky, N. Tiercelin, P. Pernod, “Magneto-electroacoustic dynamics in a straintronic random access memory cell”, Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:1 (2020), 43–46; Tech. Phys. Lett., 46:1 (2020), 38–41
Linking options:
https://www.mathnet.ru/eng/pjtf5228 https://www.mathnet.ru/eng/pjtf/v46/i1/p43
|
Statistics & downloads: |
Abstract page: | 58 | Full-text PDF : | 14 |
|