|
Fizika i Tekhnika Poluprovodnikov, 2021, Volume 55, Issue 1, Page 85
(Mi phts6588)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Semiconductor physics
Device performance optimization of organic thin-film transistors at short-channel lengths using vertical channel engineering techniques
F. Anaa, N. Dinb a Department of Electronics and Communication Engineering, School of Engineering & Technology,
Baba Ghulam Shah Badshah University, Rajouri, Jammu & Kashmir, 185234, India
b Department of Electronics and Communication Engineering, National Institute of Technology, Srinagar, 190006, India
Abstract:
This paper presents a finite-element-based two-dimensional numerical simulation study of the vertical channel engineering approaches for controlling the short-channel effects (SCEs) in organic transistors based on thin-film transistor technology (OTFTs). The impact of gate-oxide thickness $T_{\mathrm{Ox}}$ scaling and usage of high-permittivity gate dielectric material has been analyzed for a bottom-contact organic thin-film transistors at channel length of 0.7 $\mu$m. The techniques have been used to investigate the impact on drain-induced barrier lowering (DIBL), sub-threshold slope, and $I_{\mathrm{On}}/I_{\mathrm{Off}}$ ratio. The results have shown a significant reduction in values of DIBL and sub-threshold slope in short-channel OTFTs when either of the channel engineering techniques are employed. A high $I_{\mathrm{On}}/I_{\mathrm{Off}}$ ratio of the order of $\sim$10$^7$ has been achieved using a high-permittivity gate-oxide material. It has been observed that using a high-permittivity gate dielectric material, a peak value of $I_{\mathrm{On}}/I_{\mathrm{Off}}$ ratio can be achieved for an equivalent oxide thickness of 5 nm. The results suggest that the desirable transistor performance can be achieved through proper selection of gate-oxide material and thickness.
Keywords:
DIBL, high-$\kappa$ gate dielectric, leakage currents, sub-threshold.
Received: 16.08.2020 Revised: 16.08.2020 Accepted: 06.09.2020
Citation:
F. Ana, N. Din, “Device performance optimization of organic thin-film transistors at short-channel lengths using vertical channel engineering techniques”, Fizika i Tekhnika Poluprovodnikov, 55:1 (2021), 85; Semiconductors, 55:1 (2021), 116–121
Linking options:
https://www.mathnet.ru/eng/phts6588 https://www.mathnet.ru/eng/phts/v55/i1/p85
|
Statistics & downloads: |
Abstract page: | 61 | Full-text PDF : | 18 |
|