Fizika i Tekhnika Poluprovodnikov
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika i Tekhnika Poluprovodnikov:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika i Tekhnika Poluprovodnikov, 2017, Volume 51, Issue 2, Pages 253–257
DOI: https://doi.org/10.21883/FTP.2017.02.44114.8298
(Mi phts6242)
 

Semiconductor physics

Increase the threshold voltage of high voltage GaN transistors by low temperature atomic hydrogen treatment

E. V. Erofeeva, I. V. Fedinb, I. V. Kutkovb, Y. N. Yurjevc

a Tomsk State University of Control Systems and Radioelectronics
b "Mikran" Research and Production Company, Tomsk
c Institute of Physics and Technology, Tomsk Polytechnical University
Abstract: High-electron-mobility transistors (HEMTs) based on AlGaN/GaN epitaxial heterostructures are a promising element base for the fabrication of high voltage electronic devices of the next generation. This is caused by both the high mobility of charge carriers in the transistor channel and the high electric strength of the material, which makes it possible to attain high breakdown voltages. For use in high-power switches, normally off-mode GaN transistors operating under enhancement conditions are required. To fabricate normally off GaN transistors, one most frequently uses a subgate region based on magnesium-doped $p$-GaN. However, optimization of the $p$-GaN epitaxial-layer thickness and the doping level makes it possible to attain a threshold voltage of GaN transistors close to $V_{\operatorname{th}}$ = +2 V. In this study, it is shown that the use of low temperature treatment in an atomic hydrogen flow for the $p$-GaN-based subgate region before the deposition of gate-metallization layers makes it possible to increase the transistor threshold voltage to $V_{\operatorname{th}}$ = +3.5 V. The effects under observation can be caused by the formation of a dipole layer on the $p$-GaN surface induced by the effect of atomic hydrogen. The heat treatment of hydrogen-treated GaN transistors in a nitrogen environment at a temperature of $T$ = 250$^\circ$C for 12 h reveals no degradation of the transistor’s electrical parameters, which can be caused by the formation of a thermally stable dipole layer at the metal/$p$-GaN interface as a result of hydrogenation.
Received: 26.04.2016
Accepted: 05.05.2016
English version:
Semiconductors, 2017, Volume 51, Issue 2, Pages 245–248
DOI: https://doi.org/10.1134/S1063782617020063
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: E. V. Erofeev, I. V. Fedin, I. V. Kutkov, Y. N. Yurjev, “Increase the threshold voltage of high voltage GaN transistors by low temperature atomic hydrogen treatment”, Fizika i Tekhnika Poluprovodnikov, 51:2 (2017), 253–257; Semiconductors, 51:2 (2017), 245–248
Citation in format AMSBIB
\Bibitem{EroFedKut17}
\by E.~V.~Erofeev, I.~V.~Fedin, I.~V.~Kutkov, Y.~N.~Yurjev
\paper Increase the threshold voltage of high voltage GaN transistors by low temperature atomic hydrogen treatment
\jour Fizika i Tekhnika Poluprovodnikov
\yr 2017
\vol 51
\issue 2
\pages 253--257
\mathnet{http://mi.mathnet.ru/phts6242}
\crossref{https://doi.org/10.21883/FTP.2017.02.44114.8298}
\elib{https://elibrary.ru/item.asp?id=29006007}
\transl
\jour Semiconductors
\yr 2017
\vol 51
\issue 2
\pages 245--248
\crossref{https://doi.org/10.1134/S1063782617020063}
Linking options:
  • https://www.mathnet.ru/eng/phts6242
  • https://www.mathnet.ru/eng/phts/v51/i2/p253
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika i Tekhnika Poluprovodnikov Fizika i Tekhnika Poluprovodnikov
    Statistics & downloads:
    Abstract page:39
    Full-text PDF :21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024