Fizika i Tekhnika Poluprovodnikov
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika i Tekhnika Poluprovodnikov:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika i Tekhnika Poluprovodnikov, 2018, Volume 52, Issue 4, Page 483 (Mi phts5879)  

This article is cited in 7 scientific papers (total in 7 papers)

XXV International Symposium ''Nanostructures: Physics and Technology'', Saint Petersburg, June 26-30, 2017
Quantum wells, Quantum wires, Quantum dots, band structure

Floquet engineering of gapped 2D materials

O. V. Kibisa, K. Dinib, I. V. Iorshc, I. A. Shelykhbc

a Department of Applied and Theoretical Physics, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
b Science Institute, University of Iceland, Dunhagi 3, IS-107, Reykjavik, Iceland
c ITMO University, 197101 St. Petersburg, Russia
Full-text PDF (28 kB) Citations (7)
Abstract: It is demonstrated theoretically that the interaction of gapped 2D materials (gapped graphene and transition metal dichalchogenide monolayers) with a strong high-frequency electromagnetic field (dressing field) crucially changes the band structure of the materials. As a consequence, the renormalized band structure of the materials drastically depends on the field polarization. Particularly, a linearly polarized dressing field always decreases band gaps, whereas a circularly polarized field breaks the equivalence of band valleys in different points of the Brillouin zone and can both increase and decrease corresponding band gaps. It is shown also that a dressing field can turn both the band gaps and the spin splitting of the bands into zero. As a result, the dressing field can serve as an effective tool to control spin and valley properties of the materials in various optoelectronic applications.
Funding agency Grant number
RISE (Eric and Wendy Schmidt Fund)
European Union's Seventh Framework Programme
Russian Foundation for Basic Research 17-02-00053
Rannis (Icelandic Research Fund)
Ministry of Education and Science of the Russian Federation 3.4573.2017/6.7
3.2614.2017/4.6
3.1365.2017/4.6
3.8884.2017/8.9
14.Y26.31.0015
The work was partially supported by RISE Program (project CoExAN), FP7 ITN Program (project NOTEDEV), Russian Foundation for Basic Research (project 17-02-00053), Rannis project 163082-051, and Ministry of Education and Science of Russian Federation (projects 3.4573.2017/6.7, 3.2614.2017/4.6, 3.1365.2017/4.6, 3.8884.2017/8.9 and 14.Y26.31.0015)
English version:
Semiconductors, 2018, Volume 52, Issue 4, Pages 523–525
DOI: https://doi.org/10.1134/S1063782618040176
Bibliographic databases:
Document Type: Article
Language: English
Citation: O. V. Kibis, K. Dini, I. V. Iorsh, I. A. Shelykh, “Floquet engineering of gapped 2D materials”, Fizika i Tekhnika Poluprovodnikov, 52:4 (2018), 483; Semiconductors, 52:4 (2018), 523–525
Citation in format AMSBIB
\Bibitem{KibDinIor18}
\by O.~V.~Kibis, K.~Dini, I.~V.~Iorsh, I.~A.~Shelykh
\paper Floquet engineering of gapped 2D materials
\jour Fizika i Tekhnika Poluprovodnikov
\yr 2018
\vol 52
\issue 4
\pages 483
\mathnet{http://mi.mathnet.ru/phts5879}
\elib{https://elibrary.ru/item.asp?id=32740478}
\transl
\jour Semiconductors
\yr 2018
\vol 52
\issue 4
\pages 523--525
\crossref{https://doi.org/10.1134/S1063782618040176}
Linking options:
  • https://www.mathnet.ru/eng/phts5879
  • https://www.mathnet.ru/eng/phts/v52/i4/p483
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika i Tekhnika Poluprovodnikov Fizika i Tekhnika Poluprovodnikov
    Statistics & downloads:
    Abstract page:43
    Full-text PDF :10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024