Abstract:
GaAs light-emitting (LED) and HEMT structures with δ-doped regions, InGaAs/GaAs quantum wells, and surface layers of InAs/GaAs quantum dots were studied by means of the electrochemical capacitance- voltage profiling technique. The concentration depth profiles of free charge carriers were obtained. Charges accumulated in quantum wells and quantum dots, as well as the doping levels of the emitter and δ layers were determined. The band structure and free carrier density distribution over the depth of the samples with different quantum well geometry were simulated. The specific features of electrochemical capacitance- voltage profiling in different heterostructure types are analyzed. A method of integration of capacitance- voltage curves at each etching stage was suggested. This method provides the efficient separation of responses from closely located layers, particularly the quantum well and δ layer.
Citation:
G. E. Yakovlev, M. V. Dorokhin, V. I. Zubkov, A. L. Dudin, A. V. Zdoroveyshchev, E. I. Malysheva, Yu. A. Danilov, B. N. Zvonkov, A. V. Kudrin, “Specific features of the electrochemical capacitance–voltage profiling of GaAs LED and pHEMT structures with quantum-confined regions”, Fizika i Tekhnika Poluprovodnikov, 52:8 (2018), 873–880; Semiconductors, 52:8 (2018), 1004–1011
\Bibitem{YakDorZub18}
\by G.~E.~Yakovlev, M.~V.~Dorokhin, V.~I.~Zubkov, A.~L.~Dudin, A.~V.~Zdoroveyshchev, E.~I.~Malysheva, Yu.~A.~Danilov, B.~N.~Zvonkov, A.~V.~Kudrin
\paper Specific features of the electrochemical capacitance--voltage profiling of GaAs LED and pHEMT structures with quantum-confined regions
\jour Fizika i Tekhnika Poluprovodnikov
\yr 2018
\vol 52
\issue 8
\pages 873--880
\mathnet{http://mi.mathnet.ru/phts5756}
\crossref{https://doi.org/10.21883/FTP.2018.08.46212.8708}
\elib{https://elibrary.ru/item.asp?id=35269429}
\transl
\jour Semiconductors
\yr 2018
\vol 52
\issue 8
\pages 1004--1011
\crossref{https://doi.org/10.1134/S1063782618080250}
Linking options:
https://www.mathnet.ru/eng/phts5756
https://www.mathnet.ru/eng/phts/v52/i8/p873
This publication is cited in the following 9 articles:
O. L. Golikov, N. E. Kodochigov, S. V. Obolensky, A. S. Puzanov, E. A. Tarasova, S. V. Khazanova, “Analysis of Nonlinear Distortions of Dphemt Structures Based on a GaAs/InGaAs Compound with Double-Sided Delta-Doping”, Mikroèlektronika, 53:1 (2024), 3
O. L. Golikov, N. E. Kodochigov, S. V. Obolensky, A. S. Puzanov, E. A. Tarasova, S. V. Khazanova, “Analysis of Nonlinear Distortions of DpHEMT Structures Based on a GaAs/In0.53Ga0.47As Compound with Double-Sided Delta-Doping”, Russ Microelectron, 53:1 (2024), 51
D. Yu. Protasov, P. P. Kamesh, K. A. Svit, D. V. Dmitriev, A. A. Makeeva, E. M. Rzaev, K. S. Zhuravlev, “The Electrochemical Profiling of n+/n GaAs Structures for Field-Effect Transistors”, Semiconductors, 58:3 (2024), 254
Igor A. Salimon, Aleksandr V. Averchenko, Svetlava A. Lipovskikh, Elena A. Skryleva, Artyom V. Novikov, Pavlos G. Lagoudakis, Sakellaris Mailis, “UV laser-induced nanostructured porous oxide in GaAs crystals”, Solid State Sciences, 128 (2022), 106887
G. E. Yakovlev, D. S. Frolov, V. I. Zubkov, “Diagnostics of semiconductor structures by electrochemical capacitance-voltage profiling technique”, Zavod. lab., Diagn. mater., 87:1 (2021), 35
Xianshao Zou, Chuanshuai Li, Xiaojun Su, Yuchen Liu, Daniel Finkelstein-Shapiro, Wei Zhang, Arkady Yartsev, “Carrier Recombination Processes in GaAs Wafers Passivated by Wet Nitridation”, ACS Appl. Mater. Interfaces, 12:25 (2020), 28360
G. E. Yakovlev, I. A. Nyapshaev, I. S. Shahray, D. A. Andronikov, V. I. Zubkov, E. I. Terukov, “Through concentration profiling of heterojunction solar cells”, Tech. Phys. Lett., 45:9 (2019), 890–893
D. S. Frolov, G. E. Yakovlev, V. I. Zubkov, “Technique for the electrochemical capacitance–voltage profiling of heavily doped structures with a sharp doping profile”, Semiconductors, 53:2 (2019), 268–272
Yana V. Ivanova, George E. Yakovlev, Vasily I. Zubkov, “EMISSION PROCESSES OF QUANTUM WELL INTERACTION WITH DELTA-LAYER IN pHEMT-HETEROSTRUCTURES”, Izv. vysš. učebn. zaved. Ross., Radioèlektron., 2018, no. 5, 44