Fizika i Tekhnika Poluprovodnikov
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika i Tekhnika Poluprovodnikov:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika i Tekhnika Poluprovodnikov, 2018, Volume 52, Issue 11, Pages 1366–1372
DOI: https://doi.org/10.21883/FTP.2018.11.46600.22
(Mi phts5697)
 

This article is cited in 1 scientific paper (total in 1 paper)

XXII International symposium ''Nanophysics and Nanoelectronics'', Nizhny novgorod, March, 12-15, 2018

Development of a physical-topological model for the response of a high-power vertical DMOS transistor to the effect of pulsed gamma-radiation

A. V. Khananovaab, S. V. Obolenskya

a Lobachevsky State University of Nizhny Novgorod
b Russian Federal Nuclear Center E. I. Zababakhin All-Russian Scientific Research Institute of Technical Physics, Snezhinsk
Full-text PDF (664 kB) Citations (1)
Abstract: A method for developing models of semiconductor devices with two-dimensional nonuniform concentration profiles of donors and acceptors in working regions of a semiconductor device structure is for the first time proposed based on a complex of physical-topological modeling of charge carrier transport and process simulation of the forming processes of the device structure. The application of process simulation is due to the need to correctly define the parameters of the semiconductor device structure, which are used as initial data to calculate the electron transport according to the physical-topological model. The parameters of production processes of ion implantation, diffusion, and lithography, which were refined during process simulation, are determined for a high-power metal–oxide–semiconductor (MOS) transistor forming by the double diffusion method in accordance with known electrical characteristics and measured geometrical sizes of the structure. This results in two-dimensional distribution profiles of donors and acceptors in $p$$n$ junctions necessary to calculate the transistor breakdown under the effect of pulsed $\gamma$ radiation. Breakdown processes are modeled with the help of the physical-topological model based on the Poisson and continuity equations as well as expressions for the diffusion and drift current densities in the transistor. Accounting for carriers formed at the instant of $\gamma$ irradiation is implemented by the introduction of the dependence of the generation coefficient of electron–hole pairs on the radiation-dose power. The results of calculations correlate well with the experimental data, which makes it possible to give a conclusion regarding the adequacy of the proposed complex model.
Keywords: DMOS Transistors, Double Diffusion Method, Semiconductor Device Structures, Proposed Complex Model, Transistor Assembly.
Funding agency Grant number
Russian Science Foundation 18-13-00066
Received: 25.04.2018
Accepted: 07.05.2018
English version:
Semiconductors, 2018, Volume 52, Issue 11, Pages 1477–1483
DOI: https://doi.org/10.1134/S106378261811012X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. V. Khananova, S. V. Obolensky, “Development of a physical-topological model for the response of a high-power vertical DMOS transistor to the effect of pulsed gamma-radiation”, Fizika i Tekhnika Poluprovodnikov, 52:11 (2018), 1366–1372; Semiconductors, 52:11 (2018), 1477–1483
Citation in format AMSBIB
\Bibitem{KhaObo18}
\by A.~V.~Khananova, S.~V.~Obolensky
\paper Development of a physical-topological model for the response of a high-power vertical DMOS transistor to the effect of pulsed gamma-radiation
\jour Fizika i Tekhnika Poluprovodnikov
\yr 2018
\vol 52
\issue 11
\pages 1366--1372
\mathnet{http://mi.mathnet.ru/phts5697}
\crossref{https://doi.org/10.21883/FTP.2018.11.46600.22}
\elib{https://elibrary.ru/item.asp?id=36903615}
\transl
\jour Semiconductors
\yr 2018
\vol 52
\issue 11
\pages 1477--1483
\crossref{https://doi.org/10.1134/S106378261811012X}
Linking options:
  • https://www.mathnet.ru/eng/phts5697
  • https://www.mathnet.ru/eng/phts/v52/i11/p1366
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika i Tekhnika Poluprovodnikov Fizika i Tekhnika Poluprovodnikov
    Statistics & downloads:
    Abstract page:37
    Full-text PDF :11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024