Fizika i Tekhnika Poluprovodnikov
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika i Tekhnika Poluprovodnikov:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika i Tekhnika Poluprovodnikov, 2019, Volume 53, Issue 7, Pages 947–952
DOI: https://doi.org/10.21883/FTP.2019.07.47872.9040
(Mi phts5460)
 

Semiconductor structures, low-dimensional systems, quantum phenomena

Magnetotransport spectroscopy of the interface, quantum well, and hybrid states in structures with 16-nm-thick multiple HgTe layers

G. Yu. Vasil'evaa, A. A. Greshnova, Yu. B. Vasil'eva, N. N. Mikhailovb, A. A. Usikovaa, R. J. Haugc

a Ioffe Institute, St. Petersburg
b Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk
c Institut fur Festkorperphysik, Leibniz Universitat Hannover, Hannover, Germany
Abstract: The longitudinal and Hall components of the resistivity tensor are measured in structures with multiple HgTe layers 16 nm thick in magnetic fields to 12 T at temperatures from 1.5 to 300 K. The slope of the magnetic-field dependence of the Hall resistance is found to change its sign at a certain critical temperature $T_c$ = 5 and 10 K in the two studied samples, which indicates the presence of two types of charge carriers and a change in the relation between their contributions to the Hall resistance with temperature. The low critical temperature and manifestation of the “two-component” nature of the Hall curves only at $T>T_c$ prove that the ground state of the system at $T = T_c$ is gapless. At higher temperatures (20 K $< T <$ 200 K), the Hall concentration is proportional to the temperature with good accuracy. The description of the charge-carrier dispersion laws by the 8-band $\mathbf{kp}$ model taking into account $\Gamma_8$-band-edge splitting caused by mechanical stresses, which forms both types of state in HgTe, makes it possible to quantitatively describe the observed magnetotransport features. It is shown that they are associated with the simultaneous filling of electron and hole states formed as a result of mixing interface states responsible for the topological-insulator phase and the quantum-confined states in the $\Gamma_8$ band.
Funding agency Grant number
Russian Science Foundation 17-72-10134
Received: 06.12.2018
Revised: 06.03.2019
Accepted: 15.03.2019
English version:
Semiconductors, 2019, Volume 53, Issue 7, Pages 930–935
DOI: https://doi.org/10.1134/S1063782619070248
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. Yu. Vasil'eva, A. A. Greshnov, Yu. B. Vasil'ev, N. N. Mikhailov, A. A. Usikova, R. J. Haug, “Magnetotransport spectroscopy of the interface, quantum well, and hybrid states in structures with 16-nm-thick multiple HgTe layers”, Fizika i Tekhnika Poluprovodnikov, 53:7 (2019), 947–952; Semiconductors, 53:7 (2019), 930–935
Citation in format AMSBIB
\Bibitem{VasGreVas19}
\by G.~Yu.~Vasil'eva, A.~A.~Greshnov, Yu.~B.~Vasil'ev, N.~N.~Mikhailov, A.~A.~Usikova, R.~J.~Haug
\paper Magnetotransport spectroscopy of the interface, quantum well, and hybrid states in structures with 16-nm-thick multiple HgTe layers
\jour Fizika i Tekhnika Poluprovodnikov
\yr 2019
\vol 53
\issue 7
\pages 947--952
\mathnet{http://mi.mathnet.ru/phts5460}
\crossref{https://doi.org/10.21883/FTP.2019.07.47872.9040}
\elib{https://elibrary.ru/item.asp?id=39133321}
\transl
\jour Semiconductors
\yr 2019
\vol 53
\issue 7
\pages 930--935
\crossref{https://doi.org/10.1134/S1063782619070248}
Linking options:
  • https://www.mathnet.ru/eng/phts5460
  • https://www.mathnet.ru/eng/phts/v53/i7/p947
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika i Tekhnika Poluprovodnikov Fizika i Tekhnika Poluprovodnikov
    Statistics & downloads:
    Abstract page:35
    Full-text PDF :9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024