The development of the data processing scheme, analysis of the spin-boson model, and analysis of the damped Jaynes-Cummings model are supported by the Russian Science Foundation (Grant No. 19-71-10092), by the Leading Research Center on Quantum Computing (Agreement No. 014/20; analysis of non-Markovian processes for NISQ devices), and by the Priority 2030 program at the National University of Science and Technology “MISIS” under the project K1-2022-027 (applications to various quantum models). The analysis of the finite-environment-induced non-Markovian quantum dynamics is supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS” for support under Project No. 19-1-2-66-1. The authors thank Alexander Ryzhov and Georgiy Semin for fruitful discussions.
This publication is cited in the following 15 articles:
Ryui Kaneko, Masatoshi Imada, Yoshiyuki Kabashima, Tomi Ohtsuki, “Forecasting long-time dynamics in quantum many-body systems by dynamic mode decomposition”, Phys. Rev. Research, 7:1 (2025)
Mariana O. Monteiro, Nadja K. Bernardes, Eugene M. Broni, Francisco A. B. F. de Moura, Guilherme M. A. Almeida, “Non-Markovian to Markovian decay in structured environments with correlated disorder”, Phys. Rev. A, 111:2 (2025)
Lyuzhou Ye, Yao Wang, Xiao Zheng, “Simulating many-body open quantum systems by harnessing the power of artificial intelligence and quantum computing”, The Journal of Chemical Physics, 162:12 (2025)
Alena S. Kazmina, Ilia V. Zalivako, Alexander S. Borisenko, Nikita A. Nemkov, Anastasiia S. Nikolaeva, Ilya A. Simakov, Arina V. Kuznetsova, Elena Yu. Egorova, Kristina P. Galstyan, Nikita V. Semenin, Andrey E. Korolkov, Ilya N. Moskalenko, Nikolay N. Abramov, Ilya S. Besedin, Daria A. Kalacheva, Viktor B. Lubsanov, Aleksey N. Bolgar, Evgeniy O. Kiktenko, Ksenia Yu. Khabarova, Alexey Galda, Ilya A. Semerikov, Nikolay N. Kolachevsky, Nataliya Maleeva, Aleksey K. Fedorov, “Demonstration of a parity-time-symmetry-breaking phase transition using superconducting and trapped-ion qutrits”, Phys. Rev. A, 109:3 (2024)
I. A. Luchnikov, M. A. Gavreev, A. K. Fedorov, “Controlling quantum many-body systems using reduced-order modeling”, Phys. Rev. Research, 6:1 (2024)
Anton Trushechkin, “Long-term behaviour in an exactly solvable model of pure decoherence and the problem of Markovian embedding”, Mathematics, 12:1 (2024), 1–18
Lucas B. Vieira, Simon Milz, Giuseppe Vitagliano, Costantino Budroni, “Witnessing environment dimension through temporal correlations”, Quantum, 8 (2024), 1224
Arif Ullah, Pavlo O. Dral, “MLQD: A package for machine learning-based quantum dissipative dynamics”, Computer Physics Communications, 294 (2024), 108940
Sohail Reddy, Stefanie Günther, Yujin Cho, “Data-driven characterization of latent dynamics on quantum testbeds”, AVS Quantum Science, 6:3 (2024)
Hao Zeng, Yitian Kou, Xiang Sun, “How Sophisticated Are Neural Networks Needed to Predict Long-Term Nonadiabatic Dynamics?”, J. Chem. Theory Comput., 2024
Oleg M. Sotnikov, Ilia A. Iakovlev, Evgeniy O. Kiktenko, Aleksey K. Fedorov, Vladimir V. Mazurenko, “Achieving the volume-law entropy regime with random-sign Dicke states”, Phys. Rev. A, 110:6 (2024)
Mohammad Alghadeer, Nufida D. Aisyah, Mahmoud Hezam, Saad M. Alqahtani, Ahmer A. B. Baloch, Fahhad H. Alharbi, “Machine learning prediction of materials properties from chemical composition: Status and prospects”, Chemical Physics Reviews, 5:4 (2024)
Yadong Wu, Juan Yao, Pengfei Zhang, “Preparing quantum states by measurement-feedback control with Bayesian optimization”, Front. Phys., 18:6 (2023)
Emilio Onorati, Tamara Kohler, Toby S. Cubitt, “Fitting quantum noise models to tomography data”, Quantum, 7 (2023), 1197
Maxim A. Gavreev, Evgeniy O. Kiktenko, Alena S. Mastiukova, Aleksey K. Fedorov, “Suppressing Decoherence in Quantum State Transfer with Unitary Operations”, Entropy, 25:1 (2022), 67