Loading [MathJax]/jax/output/SVG/config.js
Physical Review Research
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Physical Review Research, 2022, Volume 4, Pages 43002–22
DOI: https://doi.org/10.1103/PhysRevResearch.4.043002
(Mi phrr2)
 

This article is cited in 15 scientific papers (total in 15 papers)

Probing non-Markovian quantum dynamics with data-driven analysis: Beyond “black-box” machine-learning models

I. A. Luchnikovabc, E. O. Kiktenkoade, M. A. Gavreevacd, H. Ouerdaneb, S. N. Filippovdef, A. K. Fedorovacd

a Russian Quantum Center, Skolkovo, Moscow 143025, Russia
b Skolkovo Institute of Science and Technology, Moscow 121205, Russia
c National University of Science and Technology “MISIS”, Moscow 119049, Russia
d Moscow Institute of Physics and Technology, Moscow Region 141700, Russia
e Department of Mathematical Methods for Quantum Technologies, Steklov Mathematical Institute of Russian Academy of Sciences, Moscow 119991, Russia
f Valiev Institute of Physics and Technology of Russian Academy of Sciences, Moscow 117218, Russia
Citations (15)
Funding agency Grant number
Russian Science Foundation 19-71-10092
Russian Quantum Center 014/20
Priority 2030 Program K1-2022-027
Foundation for the Development of Theoretical Physics and Mathematics BASIS 19-1-2-66-1
The development of the data processing scheme, analysis of the spin-boson model, and analysis of the damped Jaynes-Cummings model are supported by the Russian Science Foundation (Grant No. 19-71-10092), by the Leading Research Center on Quantum Computing (Agreement No. 014/20; analysis of non-Markovian processes for NISQ devices), and by the Priority 2030 program at the National University of Science and Technology “MISIS” under the project K1-2022-027 (applications to various quantum models). The analysis of the finite-environment-induced non-Markovian quantum dynamics is supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS” for support under Project No. 19-1-2-66-1. The authors thank Alexander Ryzhov and Georgiy Semin for fruitful discussions.
Received: 11.06.2021
Revised: 16.05.2022
Accepted: 19.07.2022
Bibliographic databases:
Document Type: Article
Language: English
Linking options:
  • https://www.mathnet.ru/eng/phrr2
  • This publication is cited in the following 15 articles:
    1. Ryui Kaneko, Masatoshi Imada, Yoshiyuki Kabashima, Tomi Ohtsuki, “Forecasting long-time dynamics in quantum many-body systems by dynamic mode decomposition”, Phys. Rev. Research, 7:1 (2025)  crossref
    2. Mariana O. Monteiro, Nadja K. Bernardes, Eugene M. Broni, Francisco A. B. F. de Moura, Guilherme M. A. Almeida, “Non-Markovian to Markovian decay in structured environments with correlated disorder”, Phys. Rev. A, 111:2 (2025)  crossref
    3. Lyuzhou Ye, Yao Wang, Xiao Zheng, “Simulating many-body open quantum systems by harnessing the power of artificial intelligence and quantum computing”, The Journal of Chemical Physics, 162:12 (2025)  crossref
    4. Alena S. Kazmina, Ilia V. Zalivako, Alexander S. Borisenko, Nikita A. Nemkov, Anastasiia S. Nikolaeva, Ilya A. Simakov, Arina V. Kuznetsova, Elena Yu. Egorova, Kristina P. Galstyan, Nikita V. Semenin, Andrey E. Korolkov, Ilya N. Moskalenko, Nikolay N. Abramov, Ilya S. Besedin, Daria A. Kalacheva, Viktor B. Lubsanov, Aleksey N. Bolgar, Evgeniy O. Kiktenko, Ksenia Yu. Khabarova, Alexey Galda, Ilya A. Semerikov, Nikolay N. Kolachevsky, Nataliya Maleeva, Aleksey K. Fedorov, “Demonstration of a parity-time-symmetry-breaking phase transition using superconducting and trapped-ion qutrits”, Phys. Rev. A, 109:3 (2024)  crossref
    5. I. A. Luchnikov, M. A. Gavreev, A. K. Fedorov, “Controlling quantum many-body systems using reduced-order modeling”, Phys. Rev. Research, 6:1 (2024)  crossref
    6. Anton Trushechkin, “Long-term behaviour in an exactly solvable model of pure decoherence and the problem of Markovian embedding”, Mathematics, 12:1 (2024), 1–18  mathnet  crossref
    7. Lucas B. Vieira, Simon Milz, Giuseppe Vitagliano, Costantino Budroni, “Witnessing environment dimension through temporal correlations”, Quantum, 8 (2024), 1224  crossref
    8. Arif Ullah, Pavlo O. Dral, “MLQD: A package for machine learning-based quantum dissipative dynamics”, Computer Physics Communications, 294 (2024), 108940  crossref
    9. Sohail Reddy, Stefanie Günther, Yujin Cho, “Data-driven characterization of latent dynamics on quantum testbeds”, AVS Quantum Science, 6:3 (2024)  crossref
    10. Hao Zeng, Yitian Kou, Xiang Sun, “How Sophisticated Are Neural Networks Needed to Predict Long-Term Nonadiabatic Dynamics?”, J. Chem. Theory Comput., 2024  crossref
    11. Oleg M. Sotnikov, Ilia A. Iakovlev, Evgeniy O. Kiktenko, Aleksey K. Fedorov, Vladimir V. Mazurenko, “Achieving the volume-law entropy regime with random-sign Dicke states”, Phys. Rev. A, 110:6 (2024)  crossref
    12. Mohammad Alghadeer, Nufida D. Aisyah, Mahmoud Hezam, Saad M. Alqahtani, Ahmer A. B. Baloch, Fahhad H. Alharbi, “Machine learning prediction of materials properties from chemical composition: Status and prospects”, Chemical Physics Reviews, 5:4 (2024)  crossref
    13. Yadong Wu, Juan Yao, Pengfei Zhang, “Preparing quantum states by measurement-feedback control with Bayesian optimization”, Front. Phys., 18:6 (2023)  crossref
    14. Emilio Onorati, Tamara Kohler, Toby S. Cubitt, “Fitting quantum noise models to tomography data”, Quantum, 7 (2023), 1197  crossref
    15. Maxim A. Gavreev, Evgeniy O. Kiktenko, Alena S. Mastiukova, Aleksey K. Fedorov, “Suppressing Decoherence in Quantum State Transfer with Unitary Operations”, Entropy, 25:1 (2022), 67  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025