Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2024, Issue 2(59), Pages 73–78
DOI: https://doi.org/10.54341/20778708_2024_2_59_73
(Mi pfmt969)
 

MATHEMATICS

On the absence, non-uniqueness, and blow-up of classical solutions of mixed problems for the telegraph equation with a nonlinear potential

V. I. Korzyukab, J. V. Rudzkob

a Belarusian State University, Minsk
b Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk
References:
Abstract: For the telegraph equation with a nonlinear potential given in the first quadrant, we consider the first and the second mixed problem, for which we study issues related to the absence, non-uniqueness, and blow-up of classical solutions.
Keywords: semilinear wave equation, mixed problem, classical solution, absence of solution, non-uniqueness of solution, blow-up of solution, method of characteristics, energy methods, matching conditions.
Received: 20.12.2023
Bibliographic databases:
Document Type: Article
UDC: 517.956.35
Language: English
Citation: V. I. Korzyuk, J. V. Rudzko, “On the absence, non-uniqueness, and blow-up of classical solutions of mixed problems for the telegraph equation with a nonlinear potential”, PFMT, 2024, no. 2(59), 73–78
Citation in format AMSBIB
\Bibitem{KorRud24}
\by V.~I.~Korzyuk, J.~V.~Rudzko
\paper On the absence, non-uniqueness, and blow-up of classical solutions of mixed problems for the telegraph equation with a nonlinear potential
\jour PFMT
\yr 2024
\issue 2(59)
\pages 73--78
\mathnet{http://mi.mathnet.ru/pfmt969}
\crossref{https://doi.org/10.54341/20778708_2024_2_59_73}
\edn{https://elibrary.ru/LGNECC}
Linking options:
  • https://www.mathnet.ru/eng/pfmt969
  • https://www.mathnet.ru/eng/pfmt/y2024/i2/p73
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
    Statistics & downloads:
    Abstract page:36
    Full-text PDF :26
    References:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024