Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2023, Issue 2(55), Pages 52–55
DOI: https://doi.org/10.54341/20778708_2023_2_55_52
(Mi pfmt904)
 

MATHEMATICS

On $\sigma_3$-nilpotent finite groups

I. M. Dergachevaa, I. P. Shabalinaa, E. A. Zadorozhnyuka, I. A. Sobol'b

a Belarusian State University of Transport, Gomel
b Francisk Skorina Gomel State University
References:
Abstract: Throughout the article all groups are finite and $G$ always denotes finite group; $\mathbb{P}$ is the set of all prime numbers and $\mathfrak{J}$ is some class of groups, closed under extensions, homomorphic images and subgroups. In this paper, $\sigma_3=\{\sigma_0\}\cup\{\sigma_i\mid i\in I\}$ is a partition of the set $\mathbb{P}$, i. e. $\mathbb{P}=\sigma_0\cup\bigcup_{i\in I}\sigma_i$ and $\sigma_i\cap\sigma_j=\varnothing$ for all indices $i\ne j$ from $\{0\}\cup I$, for which $\mathfrak{J}$ is a class of $\sigma_0$-groups with $\pi(\mathfrak{J})=\sigma_0$. The group $G$ is called: $\sigma_3$-primary if $G$ is either an $\mathfrak{J}$-group or a $\sigma_i$-group for some $i\ne0$; $\sigma_3$-nilpotent if $G$ is the direct product of some $\sigma_3$-primary groups. Finite $\sigma_3$-nilpotent groups are characterized.
Keywords: finite group, $\sigma_3$-subnormal subgroup, $\sigma_3$-soluble group, $\sigma_3$-nilpotent group, Hall subgroup.
Received: 28.04.2023
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: I. M. Dergacheva, I. P. Shabalina, E. A. Zadorozhnyuk, I. A. Sobol', “On $\sigma_3$-nilpotent finite groups”, PFMT, 2023, no. 2(55), 52–55
Citation in format AMSBIB
\Bibitem{DerShaZad23}
\by I.~M.~Dergacheva, I.~P.~Shabalina, E.~A.~Zadorozhnyuk, I.~A.~Sobol'
\paper On $\sigma_3$-nilpotent finite groups
\jour PFMT
\yr 2023
\issue 2(55)
\pages 52--55
\mathnet{http://mi.mathnet.ru/pfmt904}
\crossref{https://doi.org/10.54341/20778708_2023_2_55_52}
\edn{https://elibrary.ru/SDSTAN}
Linking options:
  • https://www.mathnet.ru/eng/pfmt904
  • https://www.mathnet.ru/eng/pfmt/y2023/i2/p52
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025