Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2022, Issue 1(50), Pages 28–32
DOI: https://doi.org/10.54341/20778708_2022_1_50_28
(Mi pfmt822)
 

PHYSICS

Prediction of the properties of semiconductor Zn$_x$Mg$_y$O sol-gel layers using artificial neural networks

Y. V. Nikitjuk, A. V. Semchenko, V. V. Sidsky, K. D. Danilchenko, V. A. Prohorenko

Francisk Skorina Gomel State University
References:
Abstract: Using artificial neural networks, the properties of semiconductor sol-gel layers of Zn$_x$Mg$_y$O were predicted. To form a training data set and a data set for testing neural networks by the sol-gel method, layers were formed based on ZnO : Mg films. The measurement of the photoelectric characteristics of the sol-gel coatings was carried out on an automated basic laser testing complex in accordance with National Standart-17772-88. The experiments were performed for 150 input parameters, 135 of which were used to train neural networks. In this work, we studied the influence of the architecture of neural networks on the accuracy of predicting the properties of Zn$_x$Mg$_y$O semiconductor sol-gel layers.
Keywords: neural network, sol-gel method, thin films.
Received: 26.01.2022
Document Type: Article
UDC: 539.23
Language: Russian
Citation: Y. V. Nikitjuk, A. V. Semchenko, V. V. Sidsky, K. D. Danilchenko, V. A. Prohorenko, “Prediction of the properties of semiconductor Zn$_x$Mg$_y$O sol-gel layers using artificial neural networks”, PFMT, 2022, no. 1(50), 28–32
Citation in format AMSBIB
\Bibitem{NikSemSid22}
\by Y.~V.~Nikitjuk, A.~V.~Semchenko, V.~V.~Sidsky, K.~D.~Danilchenko, V.~A.~Prohorenko
\paper Prediction of the properties of semiconductor Zn$_x$Mg$_y$O sol-gel layers using artificial neural networks
\jour PFMT
\yr 2022
\issue 1(50)
\pages 28--32
\mathnet{http://mi.mathnet.ru/pfmt822}
\crossref{https://doi.org/10.54341/20778708_2022_1_50_28}
Linking options:
  • https://www.mathnet.ru/eng/pfmt822
  • https://www.mathnet.ru/eng/pfmt/y2022/i1/p28
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024