|
MATHEMATICS
On radicals of factorized finite $\mathfrak{X}$-groups
A. F. Vasil'ev Francisk Skorina Gomel State University
Abstract:
Let $\mathfrak{X}$ be a saturated $S$-closed formation of finite soluble groups containing the class $\mathfrak{N}^k$ of all groups whose nilpotent length does not exceed $k$, where $k\geqslant 3$. In this paper, we obtain a constructive description of all Fitting formations $\mathfrak{F}$ in $\mathfrak{X}$ such that for any $\mathfrak{X}$-group $G = AB$, there is $A_{\mathfrak{F}}\cap B_{\mathfrak{F}}\subseteq G_{\mathfrak{F}}$.
Keywords:
finite group, nilpotent length, di-$\mathfrak{F}$-group, $\mathfrak{F}$-radical, Fitting formation, radical formation with the Monakhov condition in the class $\mathfrak{X}$.
Received: 24.07.2021
Citation:
A. F. Vasil'ev, “On radicals of factorized finite $\mathfrak{X}$-groups”, PFMT, 2021, no. 4(49), 69–75
Linking options:
https://www.mathnet.ru/eng/pfmt812 https://www.mathnet.ru/eng/pfmt/y2021/i4/p69
|
Statistics & downloads: |
Abstract page: | 74 | Full-text PDF : | 32 | References: | 26 |
|