Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2020, Issue 2(43), Pages 58–63 (Mi pfmt712)  

MATHEMATICS

On one operation on the formations of finite groups

T. I. Vasilyevaa, A. G. Koranchukb

a Belarusian State University of Transport, Gomel
b F. Scorina Gomel State University
References:
Abstract: Let $\pi$ be a set of primes. In this article, the operation $w_\pi^*$ on the formations of finite groups is introduced. If $\mathfrak{F}$ is a non-empty formation, then $w_\pi^*\mathfrak{F}$ is the class of all groups $G$ such that $\pi(G)\subseteq\pi(\mathfrak{F})$ and every Sylow $q$-subgroup of $G$ is strongly $\mathrm{K}$-$\mathfrak{F}$-subnormal in $G$ for $q\in\pi\cap\pi(G)$. The properties of $w_\pi^*$ are obtained, in particular, $w_\pi^*\mathfrak{F}=w_\pi^*(w_\pi^*\mathfrak{F})$ for hereditary formations $\mathfrak{F}$. Hereditary saturated formations $\mathfrak{F}$ for which $w_\pi^*\mathfrak{F}$ coincides with $\mathfrak{F}$ have been found.
Keywords: finite group, Sylow subgroup, normalizer of Sylow subgroup, hereditary formation, $\mathfrak{F}$-subnormal subgroup, strongly $\mathrm{K}$-$\mathfrak{F}$-subnormal subgroup.
Received: 13.04.2020
Document Type: Article
UDC: 512.542
Language: English
Citation: T. I. Vasilyeva, A. G. Koranchuk, “On one operation on the formations of finite groups”, PFMT, 2020, no. 2(43), 58–63
Citation in format AMSBIB
\Bibitem{VasKor20}
\by T.~I.~Vasilyeva, A.~G.~Koranchuk
\paper On one operation on the formations of finite groups
\jour PFMT
\yr 2020
\issue 2(43)
\pages 58--63
\mathnet{http://mi.mathnet.ru/pfmt712}
Linking options:
  • https://www.mathnet.ru/eng/pfmt712
  • https://www.mathnet.ru/eng/pfmt/y2020/i2/p58
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024