Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2019, Issue 4(41), Pages 65–69 (Mi pfmt680)  

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On one generalization of $\sigma$-local and Baer-local formations

V. G. Safonova, I. N. Safonovaa, A. N. Skibab

a Belarusian State University, Minsk
b F. Scorina Gomel State University
Full-text PDF (367 kB) Citations (1)
References:
Abstract: Throughout this paper, all groups are finite and $G$ is a group. Let $\sigma=\{\sigma_i\mid i\in I\}$ be some partition of the set of all primes $\mathbb{P}$. Then $\sigma(G)=\{\sigma_i\mid \sigma_i\cap\pi(G)\ne\varnothing\}$; $\sigma^+(G)=\{\sigma_i\mid G \text{ has a chief factor } H/K, \text{ such that } \sigma(H/K)=\{\sigma_i\}\}$. The group $G$ is said to be: $\sigma$-primary if $G$ is $\sigma_i$-group for some $i$; $\sigma$-soluble if every chief factor of $G$ is $\sigma$-primary. The symbol $R_\sigma(G)$ denotes the product of all normal $\sigma$-soluble subgroups of $G$. The chief factor $H/K$ of $G$ is said to be: $\sigma$-central (in $G$) if $(H/K)\rtimes(G/C_G(H/K))$ is $\sigma$-primary; a $\sigma_i$-factor if $H/K$ is a $\sigma_i$-group. We say that $G$ is: $\sigma$-nilpotent if every chief factor of $G$ is $\sigma$-central; generalized $\{\sigma_i\}$-nilpotent if every chief $\sigma_i$-factor of $G$ is $\sigma$-central. The symbol $F_{\{g\sigma_i\}}(G)$ denotes the product of all normal generalized $\{\sigma_i\}$-nilpotent subgroups of $G$. We call any function $f$ of the form $f:\sigma\cup\{\varnothing\}\to\{\text{formations of groups}\}$, where $f(\varnothing)\ne\varnothing$, a generalized formation $\sigma$-function and we put
$$ BLF_\sigma(f)=(G\mid G/R_\sigma(G)\in f(\varnothing) \text{ and } G/F_{\{g\sigma_i\}}(G)\in f(\sigma_i) \text{ for all }\sigma_i\in\sigma^+(G)). $$
If for some generalized formation $\sigma$-function $f$ we have $\mathfrak{F}=BLF_\sigma(f)$, then we say that the class $\mathfrak{F}$ is Baer-$\sigma$-local and $f$ is a generalized $\sigma$-local definition of $\mathfrak{F}$. In this paper, we describe basic properties, examples, and some applications of Baer-$\sigma$-local formations.
Keywords: finite group, generalized formation $\sigma$-function, Baer-$\sigma$-local formation, generalized $\{\sigma_i\}$-nilpotent group, Gaschütz product.
Received: 01.11.2019
Document Type: Article
UDC: 512.542
Language: English
Citation: V. G. Safonov, I. N. Safonova, A. N. Skiba, “On one generalization of $\sigma$-local and Baer-local formations”, PFMT, 2019, no. 4(41), 65–69
Citation in format AMSBIB
\Bibitem{SafSafSki19}
\by V.~G.~Safonov, I.~N.~Safonova, A.~N.~Skiba
\paper On one generalization of $\sigma$-local and Baer-local formations
\jour PFMT
\yr 2019
\issue 4(41)
\pages 65--69
\mathnet{http://mi.mathnet.ru/pfmt680}
Linking options:
  • https://www.mathnet.ru/eng/pfmt680
  • https://www.mathnet.ru/eng/pfmt/y2019/i4/p65
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024