Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2019, Issue 4(41), Pages 36–38 (Mi pfmt674)  

This article is cited in 4 scientific papers (total in 4 papers)

MATHEMATICS

On finite groups with modular Schmidt subgroup

I. V. Bliznets, V. M. Selkin

F. Scorina Gomel State University
Full-text PDF (316 kB) Citations (4)
References:
Abstract: Let $G$ be a finite group. Then $G$ is called a Schmidt group if $G$ is not nilpotent but every proper subgroup of $G$ is nilpotent. A subgroup $M$ of $G$ is called modular in $G$ if $M$ is a modular element (in the sense of Kurosh) of the lattice $L(G)$ of all subgroups of $G$, that is, (i) $\langle X, M\cap Z \rangle=\langle X, M\rangle\cap Z$ for all $X\leqslant G$, $Z\leqslant G$ such that $X\leqslant Z$, and (ii) $\langle M, Y\cap Z \rangle=\langle M, Y\rangle\cap Z$ for all $Y\leqslant G$, $Z\leqslant G$ such that $M\leqslant G$. In this paper, we prove that if every Schmidt subgroup $A$ of $G$ with $A\leqslant G'$ is modular in $G$, then $G$ is soluble, and if every Schmidt subgroup of $G$ is modular in $G$, then the derived subgroup $G'$ is nilpotent.
Keywords: finite group, modular subgroup, Schmidt group, derived subgroup, nilpotent group.
Received: 12.09.2019
Document Type: Article
UDC: 512.542
Language: English
Citation: I. V. Bliznets, V. M. Selkin, “On finite groups with modular Schmidt subgroup”, PFMT, 2019, no. 4(41), 36–38
Citation in format AMSBIB
\Bibitem{BliSel19}
\by I.~V.~Bliznets, V.~M.~Selkin
\paper On finite groups with modular Schmidt subgroup
\jour PFMT
\yr 2019
\issue 4(41)
\pages 36--38
\mathnet{http://mi.mathnet.ru/pfmt674}
Linking options:
  • https://www.mathnet.ru/eng/pfmt674
  • https://www.mathnet.ru/eng/pfmt/y2019/i4/p36
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
    Statistics & downloads:
    Abstract page:198
    Full-text PDF :56
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024