Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2019, Issue 2(39), Pages 88–91 (Mi pfmt643)  

MATHEMATICS

On finite semi-$\pi$-special groups

N. S. Kosenoka, V. M. Selkinb, V. N. Mitsikb, V. N. Rizhikc

a Belarusian Trade and Economic University of Consumer Cooperatives
b F. Scorina Gomel State University
c Bryansk State Agrarian University
References:
Abstract: A finite group $G$ is called $\pi$-special if $G=O_{p_1}(G)\times\dots\times O_{p_n}(G)\times O_{\pi'}(G)$, where $\pi=\{p_1,\dots, p_n\}$. We say that a finite group $G$ is semi-$\pi$-special if the normalizer of every non-normal $\pi$-special subgroup of $G$ is $\pi$-special. We prove that if $G$ is not $\pi$-special but $N_G(A)$ is $\pi$-special for every subgroup $A$ of $G$ such that $A$ is either a $\pi'$-group or a $p$-group for some $p\in\pi$, then the following statements hold: (i) $G/F(G)$ is $\pi$-special. Hence $G$ has a Hall $\pi'$-subgroup $H$ and a soluble Hall $\pi$-subgroup $E$. (ii) If $G$ is not $p$-closed for each $p\in\pi$, then: (1) $H$ is normal in $G$ and $E$ is nilpotent. (2) $O_{p_1}(G)\times\dots\times O_{p_n}(G)\times H$ is a maximal $\pi$-special subgroup of $G$ and every minimal normal subgroup of $G$ is contained in $F(G)$.
Keywords: finite group, $\pi$-soluble group, $\pi$-special group, Sylow subgroup, Hall subgroup.
Received: 12.04.2019
Document Type: Article
UDC: 512.542
Language: English
Citation: N. S. Kosenok, V. M. Selkin, V. N. Mitsik, V. N. Rizhik, “On finite semi-$\pi$-special groups”, PFMT, 2019, no. 2(39), 88–91
Citation in format AMSBIB
\Bibitem{KosSelMit19}
\by N.~S.~Kosenok, V.~M.~Selkin, V.~N.~Mitsik, V.~N.~Rizhik
\paper On finite semi-$\pi$-special groups
\jour PFMT
\yr 2019
\issue 2(39)
\pages 88--91
\mathnet{http://mi.mathnet.ru/pfmt643}
Linking options:
  • https://www.mathnet.ru/eng/pfmt643
  • https://www.mathnet.ru/eng/pfmt/y2019/i2/p88
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024