|
Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2019, Issue 2(39), Pages 54–60
(Mi pfmt637)
|
|
|
|
MATHEMATICS
On the Tits alternative for generalized tetraedron groups of type $(2, 2, N, 2, 2, 2)$
V. V. Beniash-Kryvetsa, Y. A. Yushkevichb a Belarusian State University, Minsk
b M. Tank Belarusian State Pedagogical University, Minsk
Abstract:
Generalized tetraedron groups have a presentation of the form
$$
\Gamma=\left\langle x_1,x_2,x_3\mid x_1^{k_1}=x_2^{k_2}=x_3^{k_3}=R_{12}(x_1,x_2)^l=R_{23}(x_2,x_3)^m=R_{13}(x_1,x_3)^n=1\right\rangle.
$$
There exists a Rosenberger’s conjecture that the Tits alternative holds for generalized tetrahedron groups. This conjecture is
open for groups of the form
$\left\langle x_1,x_2,x_3\mid x_1^{k_1}=x_2^{k_2}=x_3^{k_3}=R_{12}(x_1,x_2)^2=(x_1^\alpha x_3^\beta)^2=(x_2^\gamma x_3^\delta)^2=1\right\rangle$, $\frac1{k_1}+\frac1{k_2}+\frac1{k_3}\geqslant\frac12$. In this paper,
a number of sufficient conditions are found for fulfillment the Tits alternative for groups
$$
\Gamma=\left\langle a,b,c\mid a^2=b^n=c^2=R(a,b)^2=(b^\alpha c)^2=(ac)^2=1\right\rangle.
$$
Keywords:
generalized tetraedron group, Tits alternative, free group, almost solvavle group.
Received: 11.03.2019
Citation:
V. V. Beniash-Kryvets, Y. A. Yushkevich, “On the Tits alternative for generalized tetraedron groups of type $(2, 2, N, 2, 2, 2)$”, PFMT, 2019, no. 2(39), 54–60
Linking options:
https://www.mathnet.ru/eng/pfmt637 https://www.mathnet.ru/eng/pfmt/y2019/i2/p54
|
Statistics & downloads: |
Abstract page: | 155 | Full-text PDF : | 44 | References: | 21 |
|