Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2019, Issue 1(38), Pages 31–39 (Mi pfmt619)  

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On non-$n$-semiabelianism polyadic groupoids of special class

A. M. Gal'mak

Mogilev State University of Food Technologies
Full-text PDF (374 kB) Citations (1)
References:
Abstract: The permutability of the elements in polyadic groupoids with polyadic operation $\eta_{s,\sigma,k}$ that is defined on Cartesian power of $A^k$ $n$-ary groupoid $\langle A,\eta\rangle$ by substitution $\sigma\in\mathbf{S}_k$ and $n$-ary operation $\eta$ are considered. The main result of the article is the theorem in which sufficient conditions of non-$n$-semiabelianism of $l$-ary ($l = s(n-1) + 1$, $k\geqslant 2$) groupoid $\langle A^k,\eta_{s,\sigma,k}\rangle$ are formulated. Numerous consequences of this theorem are given. In particular, it was found that if substitution $\sigma$ satisfies the conditions $\sigma^{n-1}\ne\sigma$, $\sigma^l=\sigma$, $n$-ary group $\langle A,\eta\rangle$ has no less than two elements, then polyadic groupoid $\langle A^k,\eta_{s,\sigma,k}\rangle$ is a non-$n$-semiabelian polyadic group.
Keywords: polyadic operation, $n$-ary groupoid, abelianism, semiabelianism, neutral sequence.
Received: 20.09.2018
Document Type: Article
UDC: 512.548
Language: Russian
Citation: A. M. Gal'mak, “On non-$n$-semiabelianism polyadic groupoids of special class”, PFMT, 2019, no. 1(38), 31–39
Citation in format AMSBIB
\Bibitem{Gal19}
\by A.~M.~Gal'mak
\paper On non-$n$-semiabelianism polyadic groupoids of special class
\jour PFMT
\yr 2019
\issue 1(38)
\pages 31--39
\mathnet{http://mi.mathnet.ru/pfmt619}
Linking options:
  • https://www.mathnet.ru/eng/pfmt619
  • https://www.mathnet.ru/eng/pfmt/y2019/i1/p31
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
    Statistics & downloads:
    Abstract page:126
    Full-text PDF :37
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024